
International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

1Er. RAJENDER BATHLAEr. RAJENDER BATHLAEr. RAJENDER BATHLAEr. RAJENDER BATHLA,,,, 2Dr. ANIL KAPILDr. ANIL KAPILDr. ANIL KAPILDr. ANIL KAPIL

 1 Ph.D RESEARCH SCHOLAR DEPTT OF COMPUTER SCIENCE , INDIA

2 PROF IN DEPTT OF COMPUTER SC & ENGG, HCTM, KAITHAL, 136027 INDIA

Abstract

Software can be tested either manually or automatically.

The two approaches are complementary: automated testing

can perform a huge number of tests in short time or period,

whereas manual testing uses the knowledge of the testing

engineer to target testing to the parts of the system that are

assumed to be more error-prone. Despite this contemporary,

tools for manual and automatic testing are usually different,

leading to decreased productivity and reliability of the

testing process. Auto Test is a testing tool that provides a

“best of both worlds” strategy: it integrates developers’ test

cases into an automated process of systematic contract-

driven testing.

This allows it to combine the benefits of both approaches

while keeping a simple interface, and to treat the two types

of tests in a unified fashion: evaluation of results is the

same, coverage measures are added up, and both types of

tests can be saved in the same format. The objective of this

paper is to discuss the Importance of Automation tool with

associate to software testing techniques in software

engineering. In this paper we provide introduction of

software testing and describe the CASE tools. The solution

of this problem leads to the new approach of software

development known as software testing in the IT world.

Software Test Automation is the process of automating the

steps of manual test cases using an automation tool or utility

to shorten the testing life cycle with respect to time.

Keywords

Manual testing, automated testing, testing economics,

benefits and costs of automation.

1. Introduction

Software testing is the process of executing a program with

the intention of finding errors in the code. It is the process

of exercising or evaluating a system or system component

by manual automatic means to verify that it satisfies

specified requirements or to identify differences between

expected and actual results [4]. Software Testing should not

be a distinct phase in System development but should be

applicable throughout the design development and

maintenance phases. ‘Software Testing is often used in

association with terms verification & validation ‘Software

testing is the process of executing software in a controlled

manner, in order to answer the question: Does the software

behave as specified. One way to ensure system‘s

responsibility is to extensively test the system. Since

software is a system component it requires a testing process

also. The main contribution of this paper lies in the

mechanisms that we provide to integrate the manual and

automated testing strategies. This integration has the

following advantages:

• The overall testing process benefits from the strengths of

both manual and automated testing;

• Support for regression testing: any automatically

generated tests that uncover bugs can be saved in the same

format as manual tests and stored in a regression testing

database;[2]

• The measures of coverage (code, dataflow, specification)

will be computed for the manual and automated tests as a

whole;

• The interface is kept consistent and simple: Auto Test only

requires a user to specify the classes that he wants to test.

Analytical Scenario of Software Testing Using Analytical Scenario of Software Testing Using Analytical Scenario of Software Testing Using Analytical Scenario of Software Testing Using
SimplisticSimplisticSimplisticSimplistic Cost ModelCost ModelCost ModelCost Model

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

Fig: 1 Model of Manual Testing

Manual unit test cases that are not relevant for any of those

classes are automatically filtered out. The paper is

organized as follows: the next section contains a general

presentation of the manual and automated testing strategies

and motivates why they should be combined.

2. Testing strategies

In this section we introduce the two strategies unified by our

tool, manual testing and automated testing, then an analysis

of the advantages and disadvantages of each, and the

rationale for integrating them.

2.1 Manual Testing Scenario

Manual unit testing has established itself as an integral part

in modern software development. It only reached a

respectable state with the introduction of adequate tool

support (the xUnit family of tools, e.g. JUnit for Java, sUnit

for Smalltalk, py Unit for Python, and Gobo Eiffel Test for

Eiffel). Such frameworks are typically small but they

provide significant practical benefits. Manual unit testing

frameworks automate test case execution. The test cases

themselves (including input data generation and test result

verification) need to be created by hand. In manual testing

the test team generates various test cases, take the .EXE of

the software, and execute the test cases to test each and

every functionality. If a defect is found, a bug report is

prepared, send it to the project manager, Test manager and

to the programmer. The software is modified and the same

steps repeated again till the error is removed.[3]

2.2 Automated Testing

Automated tests execute a sequence of actions without

human intervention. It is also defined as a testing a system

with different data sets again and again without intervention

of human. Simply automated testing is automating the

manual testing process currently in use. Automation is the

use of strategies, tools, and artifacts that augment or reduce

the need of manual or human involvement or interaction in

repetitive or redundant tasks. Minimally such a process

includes: Detailed test cases, including predictable

“expected results”, which have been developed from

Business Functional Specification and Design

Documentation. A standalone Test Environment including a

Test Database that is restorable to a known constant, such

that test cases are able to repeat each time there are

modifications made to the application.[1], [4]

3. Problem with Manual Testing

Manual Testing is time consuming.

a) There is nothing new to learn when one tests

manually.

b) People tend to neglect running manual tests.

c) None maintains a list of the tests required to be run

if they are manual tests.

d) Manual Testing is not reusable.

e) The effort required is the same each time.

f) One cannot reuse a Manual Test.

g) Manual Tests provide limited Visibility and have

to be repeated by all Stakeholders.

h) Only the developer testing the code can see the

results.

i) Tests have to be repeated by each stakeholder for

e.g. Developer, Tech Lead, GM, and Management.

j) Manual Testing ends up being an Integration Test.

k) In a typical manual test it is very difficult to test a

single unit.

l) Scripting facilities are not in manual testing.[1]

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

4. Proposed Automated Tested

Automated testing with Quick Test addresses these

problems by dramatically speeding up the testing process.

You can create tests that check all aspects of your

application or Web site, and then run these tests every time

your site or application changes. [3]

Fast: Quick test runs tests significantly faster than human

user.

Reliable: Tests perform precisely the same operations each

time they are run, thereby eliminating human error.

Programmable: You can program sophisticated tests that

bring out hidden information.

Comprehensive: you can build a suite of tests that covers

every feature in your web site or application.

Reusable : You can build a suite of tests that covers every

feature in your website or application.

5. Auto Test architecture

Auto Test is a framework for fully automated software

testing. It allows for arbitrary testing strategies to be

plugged in and is not hard coded to a certain testing

strategy. The pluggable testing strategy is only concerned

with determining exactly how and with what inputs the

system under test should be invoked. The actual execution is

a task of the framework.[6],[15]

Fig: 2 Auto Test Architecture

6. Analytical On Overly Simplistic Cost Models

for Automated Software Testing

Accurate estimates of the return on investment of test

automation require the analysis of costs and benefits

involved. However, since the benefits of test automation are

particularly hard to quantify, many estimates conducted in

industrial projects are limited to considerations of cost only.

In many cases the investigated costs include: the costs for

the testing tool or framework, the labor costs associated

with automating the tests, and the labor costs associated

with maintaining the automated tests. These costs can be

divided into fixed and variable costs. Fixed costs are the

upfront costs involved in test automation. Variable costs

increase with the number of automated test executions. In

[7], a case study originally published by Linz and Daigl [14]

is presented, which details the costs for test automation as

follows: V := Expenditure for test specification and

implementation D := Expenditure for single test execution

Accordingly, the costs for a single automated test (Aa) can

be calculated as: Aa := Va + n * Da whereby Va is the

expenditure for specifying and automating the test case, Da

is the expenditure for executing the test case one time, and n

is the number of automated test executions. Following this

model, in order to calculate the break-even point for test

automation, the cost for manual test execution of a single

test case (Am) is calculated similarly as Am := Vm + n *

Dm whereby Vm is the expenditure for specifying the test

case, Dm is the expenditure for executing the test case and n

is the number of manual test executions. The break-even

point for test automation can then be calculated by

comparing the cost for automated testing (Aa) to the cost of

manual testing (Am) as: E(n) := Aa / Am = (Va + n * Da)/

(Vm + n * Dm) According to this model, the benefit of test

automation seems clear: “From an economic standpoint, it

makes sense to automate a given test

only when the cost of automation is less than the cost of

manually executing the test the same number of times that

the automated test script would be executed over its

lifetime.” Figure 1 depicts this interrelation. The x-axis

shows the number of test runs, while the y-axis shows the

cost incurred in testing. The two curves illustrate how the

costs increase with every test run. While the curve for

manual testing costs is steeply rising, automated test

execution costs increase only moderately. However,

automated testing requires a much higher initial investment

than manual test execution does. According to this model,

the break-even point for test automation is reached at the

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

intersection point of the two curves. This “universal

formula” for test automation costs has been frequently cited

in software testing literature (e.g. [7], [8], [15]) and studies

to argue in favor for test automation.

Fig: 3 Break-even point for Automated Testing

Depending on the author, the quoted number of test runs

required to reach the break-even point varies from 2 to 20.

The logic of this formula is appealing and – in a narrow

context – correct. “As a simple approximation of costs,

these formulas are fair enough. They capture the common

observation that automated testing typically has higher

upfront costs while providing reduced execution costs.” [12]

For estimating the investment in test automation, however,

it is flawed for the following reasons:

• Only costs are analyzed – The underlying model compares

the costs incurred in testing but excludes the benefits. Costs

and benefits are both required for an accurate analysis,

especially when the analyzed alternatives have different

outcomes. This is true for test automation, since manual

testing and automated testing follow different approaches

and pursue different objectives (e.g., exploring new

functionality versus regression testing of existing

functionality).

• Manual testing and automated testing are incomparable –

Bach [2] argues that “hand testing and automated testing

are really two different processes, rather than two different

ways to execute the same process. Their dynamics are

different, and the bugs they tend to reveal are different.

Therefore, direct comparison of them in terms of dollar cost

or number of bugs found is meaningless.”

• All test cases and test executions are considered equally

important – Boehm criticizes in his agenda on value-based

software engineering [4]: “Much of current software

engineering practice and research is done in a value-neutral

setting, in which every requirement, use case, object, test

case, and defect is equally important.” In a real-world

project, however, different test cases and different test

executions have different priorities based on their

probability to detect a defect and on the impact which a

potential defect has on the system under test.

• Project context is not considered – The decision about

whether or not to automate testing is restricted to a single,

independent test case. Nevertheless, the investment decision

has to be made in context of the particular project situation,

which involves the total set of test cases planned and the

budget and resources allocated for testing.

• Additional cost factors are missing – A vast number of

additional factors influencing costs and benefits are not con-

sidered in the overly simplistic model [11]. Examples are

costs of abandoning automated tests after changes in the

functionality, costs incurred by the increased risk of false

positives, or total cost of ownership of testing tools

including training and adapting workflows.

7. Opportunity Cost in Test Automation

In this section we present a fictitious example to illustrate

the problems listed in the previous section. Please note that

this example simplifies a complex model to highlight and

clarify some basic ideas. We discuss and expand the model

in sections 4 and 5 where we add further details and

propose influencing factors typically found in real-world

projects. The example describes a small system under test.

The effort for running a test manually is assumed to be 0.25

hours on average. For the sake of simplicity, we assume no

initial costs for specification and preparation. Automating a

test should cost 1 hour on average, including the

expenditures for adapting and maintaining the automated

tests upon changes. Therefore, in our example, running a

test automatically can be done without any further effort

once it has been automated. According to the model

presented in the previous section, the break-even point for a

single test is reached when the test case has been run four

times.

Fig 4: Break-even point for a single test case

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

Furthermore, for our example let us assume that 100 test

cases are required to accomplish 100 percent requirements

coverage. Thus it takes 25 hours of manual testing or 100

hours of automated testing to achieve full coverage.

Comparing these figures, the time necessary to automate all

test cases is sufficient to execute all test cases four times

manually. If we further assume that the project follows an

iterative (e.g. [14]) or agile (e.g. [10]) development

approach, we may have to test several consecutive releases.

To keep the example simple, we assume that there are 8

releases to be tested and each release requires the same test

cases to be run. Consequently, completely testing all 8

releases requires 200 hours of manual testing (8 complete

test runs of 25 hours each) or 100 hours to automate the

tests (and running these tests “infinitely” often without

additional costs).

Taken from the authors’ experience, the average time

budget available for testing in many industrial projects is

typically far less – about 75 percent at most – than the

initially estimated test effort. In our example we therefore

assume a budget of 75 hours for testing. Of course, one

could argue that a complete test is not possible under these

limitations. Yet many real-world projects have to cope with

similar restrictions; fierce time-to-market constraints, strict

deadlines, and a limited budget are some of the typical

reasons. These projects can only survive the challenge of

producing tested quality products by combining and

balancing automated and manual testing. Testing in the

example project with a budget of 75 hours would neither

allow to completely test all releases manually nor to

completely automate all test cases. A trade-off between

completely testing only some of the releases and automating

only a part of the test cases is required. In economics, this

trade-off is known as the “production possibilities frontier”.

Figure 3 shows the combinations of automated and manual

test cases that testing can possibly accomplish, given the

available budget and the choice between automated and

manual testing. Any combination on or inside the frontier is

possible. Points outside the frontier are not feasible because

of the restricted budget. Efficient testing will choose only

points on rather than inside the production possibilities

frontier to make best use of the scarce budget available.

Fig 5: Production possibilities frontier for an exemplary test budget of

75 hours

The production possibilities frontier shows the trade-off that

testing faces. Once the efficient points on the frontier have

been reached, the only way of getting more automated test

cases is to reduce manual testing. Consequently Marick [10]

raises the following question: “If I automate this test, what

manual tests will I lose?” When moving from point A to

point B, for instance, more test cases are automated but at

the expense of fewer manual test executions. In this sense,

the production possibilities frontier shows the opportunity

cost of test automation as measured in terms of manual test

executions. In order to move from point A to point B, 100

manual test executions have to be abandoned. In other

words, automating one test case incurs opportunity costs of

4 manual test executions. [9]

Test runs breakeven 4 1h manual testing (Am) automated

testing (Aa) Cost of testing 75 100 300 # manual tests B 50

25 200 A# automated tests 87

8. A Cost Model Based on Opportunity Cost

Building on the example from the previous section, we

propose an alternative cost model drawing from linear

optimization. The model uses the concept of opportunity

cost to balance automated and manual testing. The

opportunity cost incurred in automating a test case is

estimated on basis of the lost benefit of not being able to run

alternative manual test cases. Hence, in contrast to the

simplified model presented in Section 2, which focuses on a

single test case, our model takes all potential test cases of a

project into consideration. Henceforth, it optimizes the

investment in automated testing in a given project context

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

by maximizing the benefit of testing rather than by

minimizing the costs of testing.[7]

8.1 Fixed Budget

First of all, the restriction of a fixed budget has to be

introduced to our model. This restriction corresponds to the

production possibilities frontier described in the previous

section. R1: na * Va + nm * Dm ≤ B na := number of

automated test cases nm := number of manual test

executions Va := expenditure for test automation Dm :=

expenditure for a manual test execution B := fixed budget

Note that this restriction does not include any fixed

expenditures (e.g., test case design and preparation) manual

testing. Furthermore, with the intention of keeping the

model simple, we assume that the effort for running an

automated test case is zero or negligibly low for the present.

This and other influence factors (e.g., the effort for

maintaining and adapting automated tests) will be discussed

in the next section. This simplification, however, reveals an

important difference between automated and manual

testing. While in automated testing the costs are mainly

influenced by the number of test cases (na), manual testing

costs are determined by the number of test executions (nm).

Thus, in manual testing, it does not make a difference

whether we execute the same test twice or whether we run

two different tests. This is consistent with manual testing in

practice – each manual test execution usually runs a

variation of the same test case [6]

8.2 Benefits and Objectives of Automated and

Manual Testing

Second, in order to compare two alternatives based on

opportunity costs, we have to valuate the benefit of each

alternative, i.e., automated test case or manual test

execution. The benefit of executing a test case is usually

determined by the information this test case provides. The

typical information is the indication of a defect. Still, there

are additional information objectives for a test case (e.g., to

assess the conformance to the specification). All

information objectives are relevant to support informed

decision making and risk mitigation. A comprehensive

discussion about what factors constitute a good test case is

given in [13].

8.3 Maximizing the Benefit

Third, to maximize the overall benefit yielded by testing,

the following target function has to be added to the model.

T: Ra(na) + Rm(nm) � max Maximizing the target function

ensures that the combination of automated and manual

testing will result in an optimal point on the production

possibilities frontier defined by restriction R1. Thus, it

makes sure the available budget is entirely and optimally

utilized.

8.4 Example

To illustrate our approach we extend the example used in

Section 3. For this example the restriction R1 is defined as

follows. R1: na * 1 + nm * 0.25 ≤ 75 To estimate

benefit of automated testing based on the risk exposure of

the tested object, we refer to the findings published by

Boehm and Basili [5]: “Studies from different environments

over many years have shown, with amazing consistency,

that between 60 and 90 percent of the defects arise from 20

percent of the modules, with a median of about 80 percent.

With equal consis- tency, nearly all defects cluster in about

half the modules produced.” Accordingly we categorize and

prioritize the test cases into 20 percent highly beneficial, 30

percent medium beneficial, and 50 percent low beneficial

and model following alternative restrictions to be used in

alternative scenarios. R2.1: na ≥ 20 R2.2: na ≥ 50 To

estimate the benefit of manual testing we propose, for this

example, to maximize the test coverage. Thus, we assume

an evenly distributed risk exposure over all test cases, but

we calculate the benefit of manual testing based on the

number of completely tested releases. Accordingly we

categorize and prioritize the test executions into one and

two or more completely tested releases. We model following

alternative restrictions for alternative scenarios. R3.1: nm ≥

100 R3.2: nm ≥ 200 Based on this example we illustrate

three possible scenarios in balancing automated and manual

testing. Figures 4a, 4b and 4c depict the example scenarios

graphically.

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

• Scenario A – The testing objectives in this scenario are,

on the one hand, to test at least one release completely and,

on the other hand, to test the most critical 50 percent of the

system for all releases. These objectives correspond to the

restrictions R3.1 and R2.2 in our example model. As shown

in Figure 4a the optimal solution is point S1 (na = 50, nm =

100) on the production possibilities frontier defined by R1.

Thus, the 50 test cases referring to the most critical 50

percent of the system should be automated and all test cases

should be run manually once.

• Scenario B – The testing objectives in this scenario are,

on the one hand, to test at least one release completely and,

on the other hand, to test the most critical 20 percent of the

system for all releases. These objectives correspond to the

restrictions R3.1 and R2.1 in our example model. As shown

in Figure 4b any point within the shaded area fulfills these

restrictions. The target function, however, will make sure

that the optimal solution will be a point between S1 (na =

50, nm = 100) and S2 (na = 20, nm = 220) on the

production possibilities frontier defined by R1. Note: While

all points on R1 between the S1 and S2 satisfy the objectives

of this scenario, the point representing the optimal solution

depends on the definition of the contribution to risk

mitigation of automated and manual testing, Ra(na) and

Rm(nm).

 • Scenario C – The testing objectives in this scenario are,

on the one hand, to test at least two releases completely and,

on the other hand, to test the most critical 50 percent of the

system for all releases. These objectives correspond to the

restrictions R3.2 and R2.2 in our example model. As shown

in Figure 4c a solution that satisfies both restrictions cannot

be found.

 Figure 6: Example scenario A

 Figure 6: Example scenario B

 Figure 6: Example scenario C

9. CONCLUSION
In this paper we discussed cost models to support decision

making in the trade-off between automated and manual

testing. We summarized typical problems and shortcomings

of overly simplistic cost models for automated testing

frequently found in literature and commonly applied in

practice:

• Only costs are evaluated and benefits are ignored

• Incomparable aspects of manual testing and automated

testing are compared

• All test cases and test executions are considered equally

important

• The project context, especially the available budget for

testing, is not taken into account.

10. References

[1] Innovative approaches of automated tools in software

testing and current technology as compared to manual

testing, Global journal of enterprise of information system,

jan 2009-june 2009.

[2] Leckraj Nagowah and Purmanand Roopnah, “AsT -A

Simp le Automated System Testing Tool”, IEEE, 978-1-

4244- 5540-9/10, 2010.

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

[3] Alex Cerv antes, “Exploring the Use of a Test

Automation Framework”, IEEEAC p ap er #1477, version

2, up dated January 9, 2009.

[4] A. Ieshin, M. Gerenko, and V. Dmitriev, “Test

Automation- Flexible Way”, IEEE, 978-1-4244-5665-9,

2009.

[5] Boehm, B., Value-Based Software Engineering:

Overview and Agenda. In: Biffl S. et al.: Value-Based

Software Engineering. Springer, 2005.

[6] Schwaber, C., Gilpin, M., Evaluating Automated

Functional Testing Tools, Forrester Research, February

2005.

[7] Ramler R., Biffl S., Grünbacher P., Value-based

Management of Software Testing. In: Biffl S. et al.: Value-

Based Software Engineering. Springer, 2005.

[8] M.Grechanik, q. Xie, and Chen Fu, “Maintaining and

Evolving GUI- Directed Test Scripts”, IC SE’09, I EEE,

Vancouver, Canada, 978-1-4244-3452-7, May 16-24, 2009.

[9] Khaled M.Mustafa, Rafa E. Al-Qutaish, Mohammad I.

Muhairat, “Cassification of Software testing Tools Based on

the Software Testing Methods”, 2009 second International

Conference on Computer and Electrical Engineering, 978-

0-7695-3925-6, 2009.

[10] R.S.Pressman, “ Software Engineering A Practitioner’s

Approach”, Mcgraw-Hill International Edition, ISBN 007-

124083-7.

[11] D. Marinov and S. Khurshid, "Test Era: A Novel

Framework for Automated Testing of Java Programs," in

Proc.~16th IEEE International Conference on Automated

Software Engineering (ASE), 2001, pp. 22-34

[12] P. Tonella, "Evolutionary testing of classes," in

International symposium on Software testing and analysis

(ISSTA'04). Boston, Massachusetts, USA: ACM Press,

2004, pp. 119-128.

[13] N. K. Patrice Godefroid, Koushik Sen, "DART:

directed automated random testing," presented at PLDI '05:

Proceedings of the 2005 ACM SIGPLAN conference on

Programming language design and implementation, 2005.

[14] Dustin, E. et. al., Automated Software Testing,

Addison- Wesley, 1999.

[15] Fewster, M., Graham, D., Software Test Automation:

Effective Use of Text Execution Tool, Addison-Wesley,

1999.

First Author

Er. Rajender Bathla Ph.D Research Scholar in the deptt of Computer
Science & Engineering India .His area of specialization in Software
Testing. He did completed his master degree M.Tech from
M.M.University Mullana in 2009. Presently working as Asstt Prof in
Computer Sc & Engg Deptt at HIET Kaithal. He has more than 35
research papers in reputed conferences and journals.

Second Author
Dr. Anil Kapil is working as Professor in the Deptt of CSE at HCTM
Kaithal. He did complete his doctorate degree in 2006 in the area of
distributed data bases. He has more than 40 research papers in a
reputed journals. He got completed more than 6 candidates of Ph.d and
more than 20 candidates of M.Phil and M.Tech degree under his
supervision.

