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Abstract 
In this paper the concept of dynamic particle swarm 

optimization is introduced. The dynamic PSO is different from 

the existing PSO’s and some local version of PSO in terms of 

swarm size and topology. Experiment conducted for benchmark 

functions of single objective optimization problem, which shows 

the better performance rather the basic PSO. The paper also 

contains the comparative analysis for Simple PSO and Dynamic 

PSO which shows the better result for dynamic PSO rather than 

simple PSO. 
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1. Introduction 

 
Optimization has been an active area of research for 

several decades. As many real-world optimization 

problems become increasingly complex, better 

optimization algorithms are always needed. 

Unconstrained optimization problems can be formulated 

as a D-dimensional minimization problem as follows:  

Min f (x) x=[x1+x2+……..xD]  

where D is the number of the parameters to be optimized. 

subjected to: Gi(x) <=0, i=1…q 

                      Hj(x) =0, j=q+1,……m  

  Xε [Xmin, Xmax]D, q is the number of inequality 

constraints and m-q is the number of equality constraints.  

The particle swarm optimizer (PSO) is a relatively new 

technique. Particle swarm optimizer (PSO), introduced by 

Kennedy and Eberhart in 1995, [1] emulates flocking 

behavior of birds to solve the optimization problems. In 

PSO, each solution is regarded as a particle. All particles 

have fitness values and velocities.  

 

During an iteration of the PSO, each particle accelerates 

independently in the direction of its own personal best 

solution found so far, as well as the. Direction of the 

global best solution discovered so far by any other 

particle. Therefore, if a particle finds a promising new 

solution, all other particles will move closer to it, 

exploring the solution space more thoroughly. Typical 

implementations of PSO start with a reasonably sized 

swarm (about 40 particles). These particles are initialized 

with a random distribution within the solution space. As 

the iterations proceed, the particles will tend to cluster 

towards a global optimum.  

 

In each iteration, the fitness function is evaluated to find 

the optimality of each proposed solution (particle), and 

then the location of each particle is updated to drive 

towards convergence. Typically, the optimization process 

is repeated about minimum 10,000 times to allow the 

particles to converge on the global optimum. If the fitness 

function is complex, then the per-iteration evaluation and 

update process will tend to be long. After a while, the 

particles tend to converge and repeating the evaluation for 

all particles per iteration will not add substantial 

improvement. Most particles would have converged on 

extremely close locations that there is no need to repeat 

the evaluation and update for each and every one of them. 

 

In this paper we have conducted the experimental 

performance on some benchmark function with the 

dynamic PSO. The simple PSO is considered as fixed 
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swarm size and fixed topological environment. We 

perform this simulation work with different swarm size in 

each iteration of PSO and also having variation in 

topology. The rest of the paper organized as follow: 

section 2 represents related work regarding Dynamic 

PSO, section 3 describe basic of dynamic particle swarm 

optimization, section 4 describe the experimental 

performance which is carried out for standard benchmark 

function, and finally section 5 focus on our conclusion 

and future scope. 

2. Related Work 

Swarm Intelligence (SI) is an innovative distributed 

intelligent paradigm for solving optimization problems 

that originally took its inspiration from the biological 

examples by swarming, flocking and herding phenomena 

in vertebrates. Ant colony optimization, Genetic 

algorithm, particle swarm optimization are various 

evolutionary algorithms proposed by researchers. Due to 

simplicity in PSO equation and fast convergence, PSO is 

found to be best among these. After analyzing each 

parameter in PSO equation Yuhui Shi and Russell 

Eberhart [2] proposes new parameter “w” called inertia 

weight in the basic equation. It can be imagined that the 

search process for PSO without the first part is a process 

where the search space statistically shrinks through the 

generations. It resembles a local search algorithm. 

Addition of this new parameter causes exploration and 

exploitation in search space. Firstly value of w was kept 

static. Later on it was kept linear from 0.9 to 0.4.  

 

Eberhart, Russell and Shi Yuhui [3] in 2000 compare 

these results with constriction factor. A small change in 

equation has been made. When Clerc’s constriction 

method is used, φ is set to 4 and constant multiplier is 

thus set to 0.729. According to Clerc, addition of 

constriction factor may be necessary to insure 

convergence of particle swarm optimization algorithm 

The PSO algorithm with the constriction factor can be 

considered as a special case of the algorithm with inertia 

weight. 

 

 

F. van den Bergh, A. P.E ngelbrecht invented Guaranteed 

Convergence Particle Swarm Optimizer (GCPSO) [4]. 

The GCPSO has strong local convergence properties than 

original PSO. This algorithm performs much better with 

the small number of particle. The new phenomenon is 

defined called as stagnation by these GCPSO i.e., if a 

particle’s current position coincides with the global best 

position particle, then the particle will only move away 

from the point if its previous velocity and w are non-zero. 

If their previous velocities are very close to zero, then all 

the particles will stop moving once they catch up with the 

global best particle, which may lead to premature 

convergence of the algorithm. In fact, this does not even 

guarantee that the algorithm has converged on a local 

minimum it merely means that all the particles have 

converged on the best position discovered so far by the 

swarm. 

 

The original PSO is easily fall into local optima in many 

optimization problems. The problem of premature 

convergence is solved by the OPSO. It allows OPSO [5] to 

continue search for global optima by applying opposition 

based learning. The OPSO use the concept of Cauchy 

mutation operator. The OPSO based on opposition- based 

learning method. The OBL method has been given by 

Hamid R.Tizhoosh, it is explained as when evaluating a 

solution x to a given problem, we can guess the opposite 

solution of x to get better solution of x’. By doing this the 

distance from the optima solution can reduce. The 

opposite solution x can be calculated as x`= a + b - x 

where x. R within [a, b]. 

 

Hierarchical PSO [6] is known as hierarchical version of 

PSO called as H-PSO. In this algorithm the particles are 

arranged in a dynamic hierarchy. In H-PSO, a particle is 

influenced by its own so far best position and by the best 

position of the particle that is directly above it in the 

hierarchy. In H-PSO, all particles are arranged in a tree 

that forms the hierarchy so that each node of the tree 

contains exactly one particle. If a particle at a child node 

as found a solution that is better than the best so far 

solution of particle at parent node, then these two 

particles are exchanged. In this algorithm the topology 

used as regular tree in which hierarchy is defined in terms 

of height and branching degree. This hierarchy gives the 

particles different influence on the rest of the swarm with 

respect to their fitness. Each particle is neighbored to 

itself and its parent in the hierarchy. Only the inner nodes 

on the deepest level might have a smaller number of 

children so that the maximum difference between the 

numbers of children of inner nodes on the deepest level is 

at most one. In order to give the best individuals in the 
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swarm a high influence, particles move up and down the 

hierarchy. 

 

Mendes [7] proposed another efficient approach which 

deals with stagnation is the fully informed particle swarm 

optimization algorithm (FIPSO) [7]. FIPSO use best of 

neighborhood velocity update strategy. In FIPSO each 

particle uses the information from all its neighbors to 

update its velocity. The structure of the population 

topology has, therefore, a critical impact on the behavior 

of the algorithm which in turn affects its performance as 

an optimizer. It has been argued that this happens because 

the simultaneous influence of all the particles in the 

swarm “confounds” the particle that is updating its 

velocity, provoking a random behavior of the particle 

swarm. 

New Particle Swarm Optimization(NPSO)[8] is the idea 

of NPSO came from our personal based experience that an 

individual not only learns from his or her own and other 

individuals’ previous best, but also learns from his or her 

own and other individuals’ mistakes. Each particle tries to 

leave its previous worst position and its group’s previous 

worst position. NPSO has the better solution result than 

the originally PSO as more seeds are needed when the 

search dimension gets larger and other parameters might 

need to change too. The solutions might get out of local 

minima with more random numbers generated. Position 

change limits may be tuned too rather than original PSO.  

 

Eberhart proposed a discrete binary version of PSO for 

binary problems [9]. In their model a particle will decide 

on "yes" or " no", "true" or "false", "include" or "not to 

include" etc. also this binary values .In binary PSO, each 

particle represents its position in binary values which are 

0 or 1. Each particle’s value can then be changed (o r 

better say mutate) from one to zero or vice versa. In 

binary PSO the velocity of a particle defined as the 

probability that a particle might change its state to one. 

The novel binary PSO [9] solve the difficulties those are 

occurred in binary PSO. In this algorithm the velocity of a 

particle is its probability to change its state from its 

previous state to its complement value, rather than the 

probability of change to 1. 

 

 In the PSO world, there exist global and local PSO 

versions. Instead of learning from the personal best and 

the best position achieved so far by the whole population, 

in the local version of PSO, each particle’s velocity is 

adjusted according to its personal best and the best 

performance achieved so far within its neighborhood. 

Kennedy claimed that PSO with large neighborhood 

would perform better for simple problems and PSO with 

small neighborhoods might perform better on complex 

problems [10]. Kennedy and Medes discussed the effects 

of different neighborhood topological structures on the 

local version PSO [11]. Suganthan applied a combined 

version of PSO where a local version PSO is run first 

followed by a global version of PSO at the end [12].  

 

Hu and Eberhart proposed a dynamically adjusted 

neighborhood when they solve the multi-objective 

optimization problems using PSO [13]. In their 

dynamically adjusted neighborhood, for each particle, the 

m closest particles are selected to be its new 

neighborhood. Veeramachaneni and his group developed 

a new version of PSO; Fitness-Distance-Ratio based PSO 

(FDR-PSO), with near neighbor interactions [14]. When 

updating each velocity dimension, the FDR_PSO 

algorithm selects one other particle, nbest, which has 

higher fitness value and near the particle being updated, 

in the velocity updating equation. In Mendes and 

Kennedy’s fully informed particle swarm optimization 

algorithm, all the neighbors of a particle are weighted and 

used to calculate the velocity [15].  

3. Dynamic Particle Swarm Optimization 

While searching for food, the birds are either scattered or 

go together before they locate the place where they can 

find the food. While the birds are searching for food from 

one place to another, there is always a bird that can smell 

the food very well, that is, the bird is perceptible of the 

place where the food can be found, having the better food 

resource information. Because they are transmitting the 

information, especially the good information at any time 

while searching the food from one place to another, 

conducted by the good information, the birds will 

eventually flock to the place where food can be found. As 

far as particle swam optimization algorithm is concerned, 

solution swam is compared to the bird swarm, the birds’ 

moving from one place to another is equal to the 

development of the solution swarm, good information is 

equal to the most optimist solution, and the food resource 

is equal to the most optimist solution during the whole 

course. 
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Particle swarm optimization is a global optimization 

algorithm for dealing with problems in which a best 

solution can be represented as a point or surface in an n-

dimensional space. Hypothesis are plotted in this space 

and seeded with an initial velocity, as well as 

communication channel between the particles. Particles 

then move through the solution space and are evaluated 

according to some fitness function after each timestamp. 

Over time particles are accelerated towards those particles 

within their grouping which have better fitness values. In 

dynamic PSO there is variation with swarm size and 

variation in topology. 

 

The dynamic particle swarm optimization concept 

consists of, at each time step, changing the velocity of 

(accelerating) each particle toward its pbest and lbest (for 

lbest version). Acceleration is weighted by random term, 

with separate random numbers being generated for 

acceleration towards pbest and lbest locations. After 

finding the best values, the particle updates its velocity 

and positions with following equations. 

 

V[id]=v[id]+c1*r(id)*(pbest[id]-

x[id])+c2*r*(id)(gbest[id]-x[ id])------ (1) 

 

 x[ id] = x[ id]+v[ id]------------------------(2) 

 

where,  

v[id ] is particle velocity  

x[ id] is the current particle  

r (id ) is random number between (0, 1)  

c1 and c2 are learning factors usually c1=c2=2. 

 

3.1 The Pseudo Code of Dynamic PSO 

For each particle  

             Initialize Function value  

END  

Calculate average fitness value  

Do  

        For each particle  

          If fitness value is less than average  

         Consider the particle  

         Calculate fitness value.  

     If the fitness value is better than the best Fitness value   

(pbest) in history  

Set current value as the new pbest.  

END  

Choose the particle with the best fitness value of all the 

particles as the gbest. 

For each particle  

         Calculate particle velocity according to equation (1)  

          Update particle position according equation (2)  

 END  

While maximum iterations or minimum error criteria is 

not attained 

4. Experimental Work 

Here our aim is to obtain the better optimized values with 

the help of this dynamic PSO algorithm. Dynamic PSO 

can be defined as varying characteristics of PSO while 

experimentation is running. Characteristic include 

topology, swarm size, search space. If topology or swarm 

size can be change during process, then it is treated as 

dynamic particle swarm optimization. So we carry out this 

simulation work on some standards benchmark function. 

And finally we compare the results with the result 

obtained by basic PSO. And we get the better result than 

Basic PSO. Thus we can get more optimized value by 

using Dynamic PSO rather than the PSO. 

 

We perform simulation to study particle behavior for 

dynamic PSO and Simple PSO in 2 and 10 dimensional 

spaces. Values of parameter involved in equation are 

considered as 0.7 for inertia, 1.49 for c1 and c2 and 

particle swarm size 40 for first iteration. Simulation has 

been carried out for 100000 iterations. Experiment has 

been conducted for standard benchmark functions. 

Following are results found during experimentation. The 

comparative result analysis is as follows: - for e.g., for 

Rastrigin benchmark function we got 0 and 0.0019 for 2 

dimensions by using dynamic PSO whereas the simple 

PSO gives 9.0428e-005 and 0.0022. Further results are 

shown in following table. 

 

Table 1: Comparative Result Analysis for Dynamic PSO               

and Simple PSO 
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5. Conclusion & Future Scope 

A dynamic particle swarm optimization is introduced in 

this paper. From the simulation result we can conclude 

that the dynamic PSO having better optimizing 

performance rather than simple PSO. This gives us the 

future direction for solving multiobjective optimization 

problems by the dynamic PSO. It can be assumed that 

dynamic PSO is better to solve multiobjective 

optimization. So future direction is to apply dynamic PSO 

on multiobjective optimization. 
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