
International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

Performance Evaluation of Dynamic Particle Swarm Performance Evaluation of Dynamic Particle Swarm Performance Evaluation of Dynamic Particle Swarm Performance Evaluation of Dynamic Particle Swarm
OptimizationOptimizationOptimizationOptimization

1
Ms. Hemlata S. Urade,

2
Prof. Rahila Patel

 1 Department Computer Science & Engineering, RCERT,RTMNU

Chandrapur, Maharashtra, India

2 Department Computer Science & Engineering, RCERT, RTMNU

Chandrapur, Maharashtra, India

Abstract
In this paper the concept of dynamic particle swarm

optimization is introduced. The dynamic PSO is different from

the existing PSO’s and some local version of PSO in terms of

swarm size and topology. Experiment conducted for benchmark

functions of single objective optimization problem, which shows

the better performance rather the basic PSO. The paper also

contains the comparative analysis for Simple PSO and Dynamic

PSO which shows the better result for dynamic PSO rather than

simple PSO.

 Keywords: Dynamic PSO, Multiobjective Optimization,

Optimization, PSO

1. Introduction

Optimization has been an active area of research for

several decades. As many real-world optimization

problems become increasingly complex, better

optimization algorithms are always needed.

Unconstrained optimization problems can be formulated

as a D-dimensional minimization problem as follows:

Min f (x) x=[x1+x2+……..xD]

where D is the number of the parameters to be optimized.

subjected to: Gi(x) <=0, i=1…q

 Hj(x) =0, j=q+1,……m

 Xε [Xmin, Xmax]D, q is the number of inequality

constraints and m-q is the number of equality constraints.

The particle swarm optimizer (PSO) is a relatively new

technique. Particle swarm optimizer (PSO), introduced by

Kennedy and Eberhart in 1995, [1] emulates flocking

behavior of birds to solve the optimization problems. In

PSO, each solution is regarded as a particle. All particles

have fitness values and velocities.

During an iteration of the PSO, each particle accelerates

independently in the direction of its own personal best

solution found so far, as well as the. Direction of the

global best solution discovered so far by any other

particle. Therefore, if a particle finds a promising new

solution, all other particles will move closer to it,

exploring the solution space more thoroughly. Typical

implementations of PSO start with a reasonably sized

swarm (about 40 particles). These particles are initialized

with a random distribution within the solution space. As

the iterations proceed, the particles will tend to cluster

towards a global optimum.

In each iteration, the fitness function is evaluated to find

the optimality of each proposed solution (particle), and

then the location of each particle is updated to drive

towards convergence. Typically, the optimization process

is repeated about minimum 10,000 times to allow the

particles to converge on the global optimum. If the fitness

function is complex, then the per-iteration evaluation and

update process will tend to be long. After a while, the

particles tend to converge and repeating the evaluation for

all particles per iteration will not add substantial

improvement. Most particles would have converged on

extremely close locations that there is no need to repeat

the evaluation and update for each and every one of them.

In this paper we have conducted the experimental

performance on some benchmark function with the

dynamic PSO. The simple PSO is considered as fixed

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

swarm size and fixed topological environment. We

perform this simulation work with different swarm size in

each iteration of PSO and also having variation in

topology. The rest of the paper organized as follow:

section 2 represents related work regarding Dynamic

PSO, section 3 describe basic of dynamic particle swarm

optimization, section 4 describe the experimental

performance which is carried out for standard benchmark

function, and finally section 5 focus on our conclusion

and future scope.

2. Related Work

Swarm Intelligence (SI) is an innovative distributed

intelligent paradigm for solving optimization problems

that originally took its inspiration from the biological

examples by swarming, flocking and herding phenomena

in vertebrates. Ant colony optimization, Genetic

algorithm, particle swarm optimization are various

evolutionary algorithms proposed by researchers. Due to

simplicity in PSO equation and fast convergence, PSO is

found to be best among these. After analyzing each

parameter in PSO equation Yuhui Shi and Russell

Eberhart [2] proposes new parameter “w” called inertia

weight in the basic equation. It can be imagined that the

search process for PSO without the first part is a process

where the search space statistically shrinks through the

generations. It resembles a local search algorithm.

Addition of this new parameter causes exploration and

exploitation in search space. Firstly value of w was kept

static. Later on it was kept linear from 0.9 to 0.4.

Eberhart, Russell and Shi Yuhui [3] in 2000 compare

these results with constriction factor. A small change in

equation has been made. When Clerc’s constriction

method is used, φ is set to 4 and constant multiplier is

thus set to 0.729. According to Clerc, addition of

constriction factor may be necessary to insure

convergence of particle swarm optimization algorithm

The PSO algorithm with the constriction factor can be

considered as a special case of the algorithm with inertia

weight.

F. van den Bergh, A. P.E ngelbrecht invented Guaranteed

Convergence Particle Swarm Optimizer (GCPSO) [4].

The GCPSO has strong local convergence properties than

original PSO. This algorithm performs much better with

the small number of particle. The new phenomenon is

defined called as stagnation by these GCPSO i.e., if a

particle’s current position coincides with the global best

position particle, then the particle will only move away

from the point if its previous velocity and w are non-zero.

If their previous velocities are very close to zero, then all

the particles will stop moving once they catch up with the

global best particle, which may lead to premature

convergence of the algorithm. In fact, this does not even

guarantee that the algorithm has converged on a local

minimum it merely means that all the particles have

converged on the best position discovered so far by the

swarm.

The original PSO is easily fall into local optima in many

optimization problems. The problem of premature

convergence is solved by the OPSO. It allows OPSO [5] to

continue search for global optima by applying opposition

based learning. The OPSO use the concept of Cauchy

mutation operator. The OPSO based on opposition- based

learning method. The OBL method has been given by

Hamid R.Tizhoosh, it is explained as when evaluating a

solution x to a given problem, we can guess the opposite

solution of x to get better solution of x’. By doing this the

distance from the optima solution can reduce. The

opposite solution x can be calculated as x`= a + b - x

where x. R within [a, b].

Hierarchical PSO [6] is known as hierarchical version of

PSO called as H-PSO. In this algorithm the particles are

arranged in a dynamic hierarchy. In H-PSO, a particle is

influenced by its own so far best position and by the best

position of the particle that is directly above it in the

hierarchy. In H-PSO, all particles are arranged in a tree

that forms the hierarchy so that each node of the tree

contains exactly one particle. If a particle at a child node

as found a solution that is better than the best so far

solution of particle at parent node, then these two

particles are exchanged. In this algorithm the topology

used as regular tree in which hierarchy is defined in terms

of height and branching degree. This hierarchy gives the

particles different influence on the rest of the swarm with

respect to their fitness. Each particle is neighbored to

itself and its parent in the hierarchy. Only the inner nodes

on the deepest level might have a smaller number of

children so that the maximum difference between the

numbers of children of inner nodes on the deepest level is

at most one. In order to give the best individuals in the

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

swarm a high influence, particles move up and down the

hierarchy.

Mendes [7] proposed another efficient approach which

deals with stagnation is the fully informed particle swarm

optimization algorithm (FIPSO) [7]. FIPSO use best of

neighborhood velocity update strategy. In FIPSO each

particle uses the information from all its neighbors to

update its velocity. The structure of the population

topology has, therefore, a critical impact on the behavior

of the algorithm which in turn affects its performance as

an optimizer. It has been argued that this happens because

the simultaneous influence of all the particles in the

swarm “confounds” the particle that is updating its

velocity, provoking a random behavior of the particle

swarm.

New Particle Swarm Optimization(NPSO)[8] is the idea

of NPSO came from our personal based experience that an

individual not only learns from his or her own and other

individuals’ previous best, but also learns from his or her

own and other individuals’ mistakes. Each particle tries to

leave its previous worst position and its group’s previous

worst position. NPSO has the better solution result than

the originally PSO as more seeds are needed when the

search dimension gets larger and other parameters might

need to change too. The solutions might get out of local

minima with more random numbers generated. Position

change limits may be tuned too rather than original PSO.

Eberhart proposed a discrete binary version of PSO for

binary problems [9]. In their model a particle will decide

on "yes" or " no", "true" or "false", "include" or "not to

include" etc. also this binary values .In binary PSO, each

particle represents its position in binary values which are

0 or 1. Each particle’s value can then be changed (o r

better say mutate) from one to zero or vice versa. In

binary PSO the velocity of a particle defined as the

probability that a particle might change its state to one.

The novel binary PSO [9] solve the difficulties those are

occurred in binary PSO. In this algorithm the velocity of a

particle is its probability to change its state from its

previous state to its complement value, rather than the

probability of change to 1.

 In the PSO world, there exist global and local PSO

versions. Instead of learning from the personal best and

the best position achieved so far by the whole population,

in the local version of PSO, each particle’s velocity is

adjusted according to its personal best and the best

performance achieved so far within its neighborhood.

Kennedy claimed that PSO with large neighborhood

would perform better for simple problems and PSO with

small neighborhoods might perform better on complex

problems [10]. Kennedy and Medes discussed the effects

of different neighborhood topological structures on the

local version PSO [11]. Suganthan applied a combined

version of PSO where a local version PSO is run first

followed by a global version of PSO at the end [12].

Hu and Eberhart proposed a dynamically adjusted

neighborhood when they solve the multi-objective

optimization problems using PSO [13]. In their

dynamically adjusted neighborhood, for each particle, the

m closest particles are selected to be its new

neighborhood. Veeramachaneni and his group developed

a new version of PSO; Fitness-Distance-Ratio based PSO

(FDR-PSO), with near neighbor interactions [14]. When

updating each velocity dimension, the FDR_PSO

algorithm selects one other particle, nbest, which has

higher fitness value and near the particle being updated,

in the velocity updating equation. In Mendes and

Kennedy’s fully informed particle swarm optimization

algorithm, all the neighbors of a particle are weighted and

used to calculate the velocity [15].

3. Dynamic Particle Swarm Optimization

While searching for food, the birds are either scattered or

go together before they locate the place where they can

find the food. While the birds are searching for food from

one place to another, there is always a bird that can smell

the food very well, that is, the bird is perceptible of the

place where the food can be found, having the better food

resource information. Because they are transmitting the

information, especially the good information at any time

while searching the food from one place to another,

conducted by the good information, the birds will

eventually flock to the place where food can be found. As

far as particle swam optimization algorithm is concerned,

solution swam is compared to the bird swarm, the birds’

moving from one place to another is equal to the

development of the solution swarm, good information is

equal to the most optimist solution, and the food resource

is equal to the most optimist solution during the whole

course.

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

Particle swarm optimization is a global optimization

algorithm for dealing with problems in which a best

solution can be represented as a point or surface in an n-

dimensional space. Hypothesis are plotted in this space

and seeded with an initial velocity, as well as

communication channel between the particles. Particles

then move through the solution space and are evaluated

according to some fitness function after each timestamp.

Over time particles are accelerated towards those particles

within their grouping which have better fitness values. In

dynamic PSO there is variation with swarm size and

variation in topology.

The dynamic particle swarm optimization concept

consists of, at each time step, changing the velocity of

(accelerating) each particle toward its pbest and lbest (for

lbest version). Acceleration is weighted by random term,

with separate random numbers being generated for

acceleration towards pbest and lbest locations. After

finding the best values, the particle updates its velocity

and positions with following equations.

V[id]=v[id]+c1*r(id)*(pbest[id]-

x[id])+c2*r*(id)(gbest[id]-x[id])------ (1)

 x[id] = x[id]+v[id]------------------------(2)

where,

v[id] is particle velocity

x[id] is the current particle

r (id) is random number between (0, 1)

c1 and c2 are learning factors usually c1=c2=2.

3.1 The Pseudo Code of Dynamic PSO

For each particle

 Initialize Function value

END

Calculate average fitness value

Do

 For each particle

 If fitness value is less than average

 Consider the particle

 Calculate fitness value.

 If the fitness value is better than the best Fitness value

(pbest) in history

Set current value as the new pbest.

END

Choose the particle with the best fitness value of all the

particles as the gbest.

For each particle

 Calculate particle velocity according to equation (1)

 Update particle position according equation (2)

 END

While maximum iterations or minimum error criteria is

not attained

4. Experimental Work

Here our aim is to obtain the better optimized values with

the help of this dynamic PSO algorithm. Dynamic PSO

can be defined as varying characteristics of PSO while

experimentation is running. Characteristic include

topology, swarm size, search space. If topology or swarm

size can be change during process, then it is treated as

dynamic particle swarm optimization. So we carry out this

simulation work on some standards benchmark function.

And finally we compare the results with the result

obtained by basic PSO. And we get the better result than

Basic PSO. Thus we can get more optimized value by

using Dynamic PSO rather than the PSO.

We perform simulation to study particle behavior for

dynamic PSO and Simple PSO in 2 and 10 dimensional

spaces. Values of parameter involved in equation are

considered as 0.7 for inertia, 1.49 for c1 and c2 and

particle swarm size 40 for first iteration. Simulation has

been carried out for 100000 iterations. Experiment has

been conducted for standard benchmark functions.

Following are results found during experimentation. The

comparative result analysis is as follows: - for e.g., for

Rastrigin benchmark function we got 0 and 0.0019 for 2

dimensions by using dynamic PSO whereas the simple

PSO gives 9.0428e-005 and 0.0022. Further results are

shown in following table.

Table 1: Comparative Result Analysis for Dynamic PSO

and Simple PSO

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 1, February 2012 www.ijcsn.org ISSN 2277-5420

5. Conclusion & Future Scope

A dynamic particle swarm optimization is introduced in

this paper. From the simulation result we can conclude

that the dynamic PSO having better optimizing

performance rather than simple PSO. This gives us the

future direction for solving multiobjective optimization

problems by the dynamic PSO. It can be assumed that

dynamic PSO is better to solve multiobjective

optimization. So future direction is to apply dynamic PSO

on multiobjective optimization.

References

[1] James Kennedy and Russel Eberhart,” Particle Swarm

Intelligence”, In Washington DC 1995.

[2] Yuhui Shi and Russell Eberhart,” A Modified Particle

Swarm Optimizer”, IEEE 1998.

[3] Xiang-Han Chen, Wei-Ping Lee, Chen yie Liao, Jag-Ting

Dai,”Adaptive Constriction Factor for Location-related

Particle Swarm”, Proceedings of the 8th WSEAS

International Conference on Evolutionary

Computin,Vancouver, British Columbia, Canada, June 19-

21, 2007.

[4] F. Vanden Bergh, A. P.E. ngelbrecht “A New Locally

Convergent Particle Swarm Optimizers” IEEE 2010.

[5] Hui Wang, Youg Lie, Sanyou Zeng, Hui Li,” Opposition

based particle swarm algorithm with Cauchy Mutation”

2007.

[6] Stefan Janson and Martin Middendorf “A hierarchical

particle swarm optimizer and its Adaptive variants” IEEE

2007.Macro A.

[7] Montes de Oca and Thomas Stutzle,” Fully Informed

Particle Swarm Optimization,” IEEE 2007.

[8] Chunming Yang and Dan Simon, “A New Particle Swarm

Optimization Technique” IEEE 2010.

[9] Mjtavi Ahmadieh Kinanesar, A Novel Binary Particle

Swarm Optimization” IEEE 2007.

[10] J. Kennedy, "Small worlds and mega-minds: effects of

neighborhood topology on particle swarm performance ".

Proc. of IEEE Congress on Evolutionary Computation (CEC

1999), Piscataway, NJ. pp. 1931-1938, 1999.

[11] J. Kennedy and R. Mendes, "Population structure and

particle swarm performance ". Proceedings of the IEEE

Congress on Evolutionary Computation (CEC 2002),

Honolulu, Hawaii USA. 2002.

[12] P. N. Suganthan, "Particle swarm optimizer with

neighborhood operator," Proc. of the IEEE Congress on

Evolutionary Computation (CEC 1999), Piscataway, NJ,

pp. 1958-1962, 1999.

[13] X. Hu and R. C. Eberhart, "Multiobjective optimization

using dynamic neighborhood particle swarm optimization,"

Proc. IEEE Congress on Evolutionary Computation (CEC

2002), Hawaii, pp. 1677-1681, 2002.

[14] T. Peram, K. Veeramachaneni, and C. K. Mohan, "Fitness-

distance-ratio based particle swarm optimization," Proc.

IEEE Swarm Intelligence System,Indianapolis, Indiana,

USA, pp. 174-181, 2003.

[15] R. Mendes, J. Kennedy, and J. Neves, "The fully informed

particle swarm: simpler, maybe better”. IEEE Transactions

on Evolutionary Computation, 8(3):204 - 210, June 2004.

.

