
International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

Dynamic Dynamic Dynamic Dynamic Test CaseTest CaseTest CaseTest Case Design Scenario and analysis ofDesign Scenario and analysis ofDesign Scenario and analysis ofDesign Scenario and analysis of
Module Testing Module Testing Module Testing Module Testing Using Manual vs. Automated TechniqueUsing Manual vs. Automated TechniqueUsing Manual vs. Automated TechniqueUsing Manual vs. Automated Technique

1Er. RAJENDER KUMAR, 2Dr. M.K.GUPTA

1PH.D RESEARCH SCHOLAR DEPTT OF COMPUTER SCIENCE, CCSU (INDIA)

 2DEPTT. OF COMPUTER SCIENCE & MATHEMATICS CCSU (INDIA)

Abstract

Software can be tested either manually or automatically.
The two approaches are complementary: automated testing

can perform a huge number of tests in short time or period,
whereas manual testing uses the knowledge of the testing

engineer to target testing to the parts of the system that are
assumed to be more error-prone. Despite this contemporary,

tools for manual and automatic testing are usually different,

leading to decreased productivity and reliability of the
testing process. AutoTest is a testing tool that provides a

“best of both worlds” strategy: it integrates developers’ test
cases into an automated process of systematic contract-
driven testing. This allows it to combine the benefits of both

approaches while keeping a simple interface, and to treat the
two types of tests in a unified fashion: evaluation of results

is the same, coverage measures are added up, and both types
of tests can be saved in the same format. The objective of
this paper is to discuss the Importance of Automation tool

with associate to software testing techniques in software
engineering. In this paper we provide introduction of

software testing and describe the CASE tools. The solution
of this problem leads to the new approach of software

development known as software testing in the IT world.

Software Test Automation is the process of automating the
steps of manual test cases using an automation tool or utility

to shorten the testing life cycle with respect to time.

Keywords Module testing, Test Case Design,

Software testing of Manual and automated.

1. Introduction
Software testing is the process of executing a program

with the intention of finding errors in the code. It is

the process of exercising or evaluating a system or

system component by manual automatic means to

verify that it satisfies specified requirements or to

identify differences between expected and actual

results [1]

 Software Testing should not be a distinct phase in

System development but should be applicable

throughout the design development and maintenance

phases. ‘Software Testing is often used in association

with terms verification & validation ‘Software testing

is the process of executing software in a controlled

manner, in order to answer the question: Does the

software behave as specified. One way to ensure

system‘s responsibility is to extensively test the

system. Since software is a system component it

requires a testing process also. The main contribution

of this paper lies in the mechanisms that we provide

to integrate the manual and automated testing

strategies. This integration has the following

advantages:

The overall testing process benefits from the strengths

of both manual and automated testing;

Support for regression testing: any automatically
generated tests that uncover bugs can be saved in the

same format as manual tests and stored in a regression

testing database;[2]

The measures of coverage (code, dataflow,

specification) will be computed for the manual and

automated tests as a whole;

association with terms verification & validation

‘Software testing is the process of executing software
in a controlled manner, in order to answer the

question: Does the software behave as specified. One

way to ensure system‘s responsibility is to extensively

test the system. Since software is a system component

it requires a testing process also. The main
contribution of this paper lies in the mechanisms that

we provide to integrate the manual and automated

testing strategies. This integration has the following

advantages:

The overall testing process benefits from the strengths

of both manual and automated testing;

Support for regression testing: any automatically

generated tests that uncover bugs can be saved in the

same format as manual tests and stored in a regression

testing database;[2][3]

The measures of coverage (code, dataflow,

specification) will be computed for the manual and

automated tests as a whole;

2 Testing strategies

In this section we introduce the two strategies unified

by our tool, manual testing and automated testing,

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

then an analysis of the advantages and disadvantages

of each, and the rationale for integrating them.

2.1 Unit Testing
Unit testing is code-oriented testing. Individual

components are tested to ensure that they operate

correctly. Each component is tested independently,

without other system components’

2.2 Module Testing
A module is a collection of dependent components

such as an object, class, an abstract data type or some

loser collection of procedures and functions. A

module encapsulates related components so it can be

tested or checked without other system modules.

2.3 Sub-system Testing

This phase involves testing collections of modules,

which have been integrated in to sub systems. It is a

design-oriented testing and is also known as

integration testing.

2.4 System Testing
The sub-systems are integrated to make up the entire

system. It is also concerned with validating that the

System meets its functional and non-functional

requirements. [4].

2.5 Acceptance testing
This is the final stage in the testing process before the

system is accepted for operational use. Acceptance

testing may also reveal requirement problems where

the system facilities do not really meet the user’s

needs [5] “Let us see there are many problems if we

test to the above mentioned software testing

techniques using manual testing rather automated

tools”.

3 Proposed Module Testing

During unit testing of C programs, a single C-level

function is tested rigorously and in isolation from the

rest of the application. Often unit testing is also called

module testing. Rigorous means that the test cases are

specially made for the unit in question and that they

comprise of input data that may be unexpected by the
unit under test. Isolated means that the test result does

not depend on the behavior of the other units in the

application. It can be achieved by directly calling the

unit under test and replacing calls to other units by

stub functions. [6]

Fig: Fi Fig: 1. Module Testing eliminates errors early on and

prevents them from showing up in later stages of the development process

3.1 What are the Benefits of Module

Testing

3.1.1 Reduces Complexity of Test Case

Specification
Instead of trying to create test cases that test the

whole set of interacting units, the test cases for unit

testing are specific to the unit under test (divide-and-

conquer). Test cases can easily comprise of input data

that is unexpected by the unit under test, something

which may be hard to achieve during system

testing.[5]

3.1.2 Easy Fault Isolation

If the unit under test is tested in isolation from the

other units, detecting the cause of a failed test case is
easy. The fault must be related to the unit under test,

and not to a unit further down the calling

hierarchy.[6]

3.1.3 Finds Errors Early

Unit testing can be conducted as soon as the unit to be

tested compiles successfully. Therefore errors inside

the unit can be detected very early.

3.1.4 Saves Money

It is generally accepted that errors detected late in a

project are more expensive to correct than errors that

are detected early. Hence unit testing saves money.

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

3.1.5 Gives Confidence

Unit testing gives confidence. After the unit testing,

the application will be made up of single, fully tested

units. A test for the whole application will then be

more likely to pass. Module/Unit concentrates

verification on the smallest element of the program –

the module. Using the detailed design description

important control paths are tested to establish errors

within the bounds of the module. The tests that are
performed as part of unit testing are shown in the

figure below. The module interface is tested to ensure

that information properly flows into and out of the

program unit being tested. The local data structure is

considered to ensure that data stored temporarily

maintains its integrity for all stages in an algorithm’s

execution. Boundary conditions are tested to ensure

that the modules perform correctly at boundaries
created to limit or restrict processing. All

independent paths through the control structure are

exercised to ensure that all statements in been

executed once. Finally, all error-handling paths are

examined. [7] [9]

4 Module Testing Analysis

Module testing is code-oriented testing. Individual

components are tested to ensure that they operate

correctly. Each component is tested independently,

without other system components. A unit test is a

piece of code written by a developer that exercises a

very small, specific area of functionality in the code

being tested. Usually a unit test exercises some

particular method in a particular context. For

example, you might add a large value to a sorted list,

then confirm that this value appears at the end of the

list. [7][9]

 Module Testing = Unit Testing

� Large programs cannot practically be tested all

at once

� Break down programs into modules

� Test modules individually as first phase

Fig .2 Module Test Structure

 Fig: 2 Structure Module Testing

 5. Example of Module Test for

 Airlines application System

Fig: 3. Air Ticket Management System.

5.1 Description: This is Airlines Ticket mgmt system

i.e. complete module. In which researcher categorized

to the module part e.g. Airlines flight Unit, Airlines

Reservation Unit system. By this module system, no

doubt testing is done easily rather test to complete

system. Because module tests are performed to prove

that a piece of code does what the developer thinks it

should be done. These module is compared by
manually or Automated tool i.e. QTP.

5.2. Description: This Module is show to the Airline

Flight Categories System. In this unit each flight class

details are mentioned e.g. economic class, executive

class, luxury class etc.

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

5.3. Description: This Unit is show to the Airline

Flight Categories System. In this Unit flight code is

mentioned and validation and check point is given in

the flight class details i.e. economic, executive, luxury

e.g. economic class traveling rate under range 12000-

18000, executive class rate is not less than 5000 or

not more than 10000 rate, luxury rate 12000 to 18000

also.

6. What is Test Case Design

A test case in software engineering is a set of

conditions or variables under which a tester will

determine whether an application or software system

is working correctly or not. The mechanism for

determining whether a software program or system

has passed or failed such a test is known as a test

oracle. In some settings, an oracle could be a

requirement or use case, while in others it could be a

heuristic. It may take many test cases to determine

that a software program or system is functioning

correctly. Test cases are often referred to as test
scripts, particularly when written. Written test cases

are usually collected into test suites[10]

Typical written test case format

A test case is usually a single step, or occasionally a
sequence of steps, to test the correct

behavior/functionalities, features of an application.

An expected result or expected outcome is usually

given.

Additional information that may be included:

• test case ID

• test case description

• test step or order of execution number

• related requirement(s)

• depth

• test category

• author

• Check boxes for whether the test is

automatable and has been automated.

Additional fields that may be included and completed

when the tests are executed:

• pass/fail

 remarks

Table: 1. Test Cases with approach of Equivalence Class

Partitioning:

6.1 What are the types of Test case design

Technique

There are two types of test case design techniques

they are

1. Equivalence class partition.

2. Boundary value analysis
Equivalence class partition: here the test engineer

writes the valid and invalid test cases i.e. positive test

cases and negative test cases.

Boundary value analyses: if there is a range kind of

input the technique used by the test engineer to

develop the test Cases for that range are called as

boundary value analyses.

6.1.1 Equivalence Class Partitioning:

Concepts: Equivalence partitioning is a method for

deriving test cases. In this method, classes of input

conditions called equivalence classes are identified

such that each member of the class causes the same

kind of processing and output to occur. In this

method, the tester identifies various equivalence

classes for partitioning. A class is a set of input

conditions that are is likely to be handled the same

way by the system. If the system were to handle one

case in the class erroneously, it would handle all cases

erroneously.[11]

Designing Test Cases Using Equivalence Partitioning

Test Case

Name

Test Case

Describe

 Test Steps Test

Case

Status

(p/f)
STEPS EXPECTED

Result

Actual

Result

Economic

Rate

Economic

rate should

be with in

5000-10000

1) <5000

2)5000-

6000

3)6001-

7000

4)7001-

8000

5)8001-

9000

6)9001-

10000

7)>10000

Not

Accepted

Accepted

Accepted

Accepted

Accepted

Accepted

Not

Accepted

The input is

accepted by

the text box

The input is

accepted by

the text box

The input is

accepted by
the text box

The input is

accepted by

the text box

The input is

accepted by

the text box

The input is

accepted by

the text box

The input is

accepted by

the text box

Fail

Pass

Pass

Pass

Pass

Pass

Fail

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

To use equivalence partitioning, you will need to

perform two steps

� Identify the equivalence classes

� Design test cases

Step 1: Identify Equivalence Classes

Take each input condition described in the

specification and derive at least two equivalence

classes for it. One class represents the set of cases

which satisfy the condition (the valid class) and one
represents cases which do not (the invalid class)

Following are some general guidelines for identifying

equivalence classes:

If the requirements state that a numeric value is input

to the system and must be within a range of values,

identify one valid class inputs which are within the

valid range and two invalid equivalence classes inputs

which are too low and inputs which are too high. For

example, if an item in inventory can have a quantity

of - 9999 to + 9999, identify

The following examples of classes:

1. one valid class: (QTY is greater than or equal to -

9999 and is less

Table: 2. Test Cases with approach of Boundary Value Analysis

than or equal to 9999). This is written as (- 9999 < =

QTY < = 9999)

2. the invalid class (QTY is less than -9999), also
written as (QTY < -9999)

3. the invalid class (QTY is greater than 9999) , also

written as (QTY >9999)

b) If the requirements state that the number of items

input by the system at some point must lie within a

certain range, specify one valid class where the

number of inputs is within the valid range, one invalid

class where there are too few inputs and one invalid

class where there are, too many inputs.

6.1.2 Module for with Boundary Value

Analysis

It is a software testing design technique in which tests

are designed to include representatives of boundary

values. The expected input and output values should

be extracted from the component specification. The

input and output values to the software component are

then grouped into sets with identifiable boundaries.

Each set, or partition, contains values that are

expected to be processed by the component in the

same way. Partitioning of test data ranges is explained

in the equivalence partitioning test case design

technique. It is important to consider both valid and

invalid partitions when designing test cases.[12]

For an example where the input values were months

of the year expressed as integers, the input

parameter 'month' might have the following

partitions:

 ... -2 -1 0 1 12 13 14 15.....

 ---------------|-----------------|---------------------

 invalid partition 1 valid partition invalid

partition

The boundaries are the values on and around the
beginning and end of a partition. If possible test cases

should be created to generate inputs or outputs that

will fall on and to either side of each boundary. This

would result in three cases per boundary. The test

cases on each side of a boundary should be in the

smallest increment possible for the component under

test. In the example above there are boundary values

at 0,1,2 and 11,12,13. If the input values were defined

as decimal data type with 2 decimal places then the

smallest increment would be the 0.01.

Where a boundary value falls within the invalid

partition the test case is designed to ensure the

software component handles the value in a controlled

manner. Boundary value analysis can be used

Test Case

Name

Test Case

Describe

 Test Steps Test

Case

Status

(p/f)
STEPS EXPECTED

Result

Actual

Result

Economic

Rate

Economic

rate should

be with in

5000-10000

1) 4000

2) 5000

3)

10000

4)

11000

Not

Accepted

Accepted

Accepted

Not

Accepted

The input

is

accepted

by the

text box

The input
is

accepted

by the

text box

The input

is

accepted

by the

text box

The input

is

accepted
by the

text box

Fail

Pass

Pass

Fail

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

throughout the testing cycle and is equally applicable

at all testing phases.[13][14]

After determining the necessary test cases with
equivalence partitioning and subsequent boundary

value analysis, it is necessary to define the

combinations of the test cases when there are multiple

inputs to a software component.

7. Airlines Module Tested using

Automated Tool (QTP)

 Fig: 4. Parameterized Testing for Airline module

7. Description: In which I have taken value in the

parameter and test with Data Table that which showed

to the conditions e.g. mentioned

15000,16000,18000,20000 as I had implemented

validation on flight class unit. Suppose if I take

<10000 and >18000 value then it would show the

failed result in the last rate value and first three values

will be done.

7.1 Airlines Module running using with

QTP Testing Tool
 Fig: 4. QTP Tool using on Airline

 Module

7.1 Description: This window is running the

conditioned Data table as mentioned

15000,16000,18000,20000 as I had implemented

validation on flight class unit. Suppose if I take

<10000 and >18000 value then it would show the

failed result in the last rate value and first three values

will be done.

 Fig: 5. Testing results of Airlines

 Module.

 Description: This test results summary is

showing the actual result that is first three values are

right e.g. 15000, 18000, 12000 that have tested and

done and the last value is wrong that has failed e.g.

 20000

8. Comparative Graph of Manual Vs

Automated Testing

Fig: 6. Comparative Graph of Manual Vs

Automated Testing

8.1 Description: This chart showing the comparative

results of Manual Vs Automated Testing blue line is

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

indicating to the manual testing and red line

indicating to the automated testing and yellow line

shows to the Manual Test Cumulative. The time

duration is mentioned 0 to 50 and total test cases

release is 1 to 5. by this chart we can understand if

one test case has be released and time in manual
testing assigned i.e 10 minutes and same assigned in

Automated Testing Suppose if again test case is to

be release the manual testing will assume time 10

minute but in the case of Automated testing time will

assume second the zero minutes

9. Comparative Study of Manual vs

Automated Testing

Manual Testing is time consuming.

a) There is nothing new to learn when one tests
manually.

b) People tend to neglect running manual tests.

c) None maintains a list of the tests required to

be run if they are manual tests.

d) Manual Testing is not reusable.

e) Tests have to be repeated by each

stakeholder for e.g. Developer, Tech Lead,

GM, and Management.

f) Manual Testing ends up being an Integration

Test.

g) In a typical manual test it is very difficult to

test a single unit.

h) Scripting facilities are not in manual

testing.[1]

Automated testing with Quick Test addresses these

problems by dramatically speeding up the testing

process. You can create tests that check all aspects of

your application or Web site, and then run these tests

every time your site or application changes. [13]

Fast : Quick test runs tests significantly faster than

human user.

Reliable: Tests perform precisely the same operations

each time they are run, thereby eliminating human

error.

Programmable: You can program sophisticated tests

that bring out hidden information.

Comprehensive: you can build a suite of tests that

covers every feature in your web site or application.

Reusable: You can build a suite of tests that covers
every feature in your website or application.

9. A Cost Model Based Analysis

Building on the example from the previous section,

we propose an alternative cost model drawing from

linear optimization. The model uses the concept of

opportunity cost to balance automated and manual

testing. The opportunity cost incurred in automating a

test case is estimated on basis of the lost benefit of not
being able to run alternative manual test cases. Hence,

in contrast to the simplified model presented in

Section 2, which focuses on a single test case, our

model takes all potential test cases of a project into

consideration. Henceforth, it optimizes the investment

in automated testing in a given project context by

maximizing the benefit of testing rather than by

minimizing the costs of testing.[7]

9.1 Fixed Budget

First of all, the restriction of a fixed budget has to be
introduced to our model. This restriction corresponds

to the production possibilities frontier described in the

previous section. R1: na * Va + nm * Dm ≤ B na :=

number of automated test cases nm := number of

manual test executions Va := expenditure for test

automation Dm := expenditure for a manual test

execution B := fixed budget Note that this restriction

does not include any fixed expenditures (e.g., test case

design and preparation) manual testing. Furthermore,

with the intention of keeping the model simple, we

assume that the effort for running an automated test
case is zero or negligibly low for the present. This and

other influence factors (e.g., the effort for maintaining

and adapting automated tests) will be discussed in the

next section. This simplification, however, reveals an

important difference between automated and manual

testing. While in automated testing the costs are

mainly influenced by the number of test cases (na),

manual testing costs are determined by the number of

test executions (nm). Thus, in manual testing, it does

not make a difference whether we execute the same

test twice or whether we run two different tests. This

is consistent with manual testing in practice – each
manual test execution usually runs a variation of the

same test case [6]

9.2 Benefits and Objectives of Automated and

Manual Testing

Second, in order to compare two alternatives based on

opportunity costs, we have to valuate the benefit of

each alternative, i.e., automated test case or manual

test execution. The benefit of executing a test case is

usually determined by the information this test case

provides. The typical information is the indication of

a defect. Still, there are additional information

objectives for a test case (e.g., to assess the
conformance to the specification). All information

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

objectives are relevant to support informed

decisionmaking and risk mitigation. A comprehensive

discussion about what factors constitute a good test

case is given in [13].

9.3 Maximizing the Benefit

Third, to maximize the overall benefit yielded by

testing, the following target function has to be added

to the model. T: Ra(na) + Rm(nm) � max

Maximizing the target function ensures that the
combination of automated and manual testing will

result in an optimal point on the production

possibilities frontier defined by restriction R1. Thus,

it makes sure the available budget is entirely and

optimally utilized.

9.4 Real Example

To illustrate our approach we extend the example

used in Section 3. For this example the restriction R1
is defined as follows. R1: na * 1 + nm * 0.25 ≤
75 To estimate benefit of automated testing based on

the risk exposure of the tested object, we refer to the

findings published by Boehm and Basili [5]: “Studies

from different environments over many years have

shown, with amazing consistency, that between 60

and 90 percent of the defects arise from 20 percent of

the modules, with a median of about 80 percent. With

equal consis- tency, nearly all defects cluster in about

half the modules produced.” Accordingly we
categorize and prioritize the test cases into 20 percent

highly beneficial, 30 percent medium beneficial, and
50 percent low beneficial and model following

alternative restrictions to be used in alternative

scenarios. R2.1: na ≥ 20 R2.2: na ≥ 50 To estimate

the benefit of manual testing we propose, for this

example, to maximize the test coverage. Thus, we

assume an evenly distributed risk exposure over all

test cases, but we calculate the benefit of manual

testing based on the number of completely tested
releases. Accordingly we categorize and prioritize the

test executions into one and two or more completely

tested releases. We model following alternative

restrictions for alternative scenarios. R3.1: nm ≥ 100

R3.2: nm ≥ 200 Based on this example we illustrate

three possible scenarios in balancing automated and

manual testing. Figures 4a, 4b and 4c depict the

example scenarios graphically.

• Scenario A – The testing objectives in this scenario

are, on the one hand, to test at least one release

completely and, on the other hand, to test the most
critical 50 percent of the system for all releases. These

objectives correspond to the restrictions R3.1 and

R2.2 in our example model. As shown in Figure 4a

the optimal solution is point S1 (na = 50, nm = 100)

on the production possibilities frontier defined by R1.

Thus, the 50 test cases referring to the most critical 50

percent of the system should be automated and all test

cases should be run manually once.

• Scenario B – The testing objectives in this scenario

are, on the one hand, to test at least one release

completely and, on the other hand, to test the most
critical 20 percent of the system for all releases. These

objectives correspond to the restrictions R3.1 and

R2.1 in our example model. As shown in Figure 4b

any point within the shaded area fulfills these

restrictions. The target function, however, will make

sure that the optimal solution will be a point between

S1 (na = 50, nm = 100) and S2 (na = 20, nm = 220) on

the production possibilities frontier defined by R1.

Note: While all points on R1 between the S1 and S2

satisfy the objectives of this scenario, the point

representing the optimal solution depends on the
definition of the contribution to risk mitigation of

automated and manual testing, Ra(na) and Rm(nm).

 • Scenario C – The testing objectives in this scenario

are, on the one hand, to test at least two releases

completely and, on the other hand, to test the most

critical 50 percent of the system for all releases. These

objectives correspond to the restrictions R3.2 and

R2.2 in our example model. As shown in Figure 4c a

solution that satisfies both restrictions cannot be

found.

Figure 7: Scenario of Auto vs. Manual A.

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

 Figure 8: Scenario of Auto vs. Manual B.

Figure9: Scenario of Auto vs. Manual C.

 9. Conclusion

The Conclusion of this research and review paper is

analyze to the manual testing drawback in software

testing rather more benefits of automated software

testing tools. The enlightened of this modern

approaches leads to the new Methodologies of

software test automation. The destination of software

testing is considered to succeed when an error is

detached. Effective Conclusions are given below.

Software testing is an art. Most of the testing methods

and practices are not very different from 20 years ago.

In the current era there are many tools and techniques

available to use. Good testing also requires a tester's

creativity, experience and intuition, together with

proper techniques. Testing is more than just

debugging. Testing is not only used to locate defects
and correct them. It is also used in validation,

verification process, and reliability measurement.

Although manual testing is not expensive but is no

more effective rather automated testing because

automation is a good way to cut down cost and time.

Testing efficiency and effectiveness is the criteria for

coverage-based testing techniques.

10. REFERENCES

 [1] Leckraj Nagowah and Purmanand Roopnah, “AsT -A

Simp le Automated System Testing Tool”, IEEE, 978-1-
4244- 5540-9/10, 2010.

[2] Alex Cerv antes, “Exploring the Use of a Test
Automation Framework”, IEEEAC p ap er #1477, version

2, up dated January 9, 2009.

[3] A. Ieshin, M. Gerenko, and V. Dmitriev, “Test

Automation- Flexible Way”, IEEE, 978-1-4244-5665-9,

2009.

[4] Boehm, B., Value-Based Software Engineering:

Overview and Agenda. In: Biffl S. et al.: Value-Based
Software Engineering. Springer, 2005.

[5] Schwaber, C., Gilpin, M., Evaluating Automated

Functional Testing Tools, Forrester Research, February

2005.

[6] Ramler R., Biffl S., Grünbacher P., Value-

based Management of Software Testing. In: Biffl S. et al.

Value-Based Software Engineering. Springer, 2005.
[7] M.Grechanik, q. Xie, and Chen Fu, “Maintaining and

Evolving GUI- Directed Test Scripts”, IC SE’09, IEEE,

Vancouver, Canada, 978-1-4244-3452-7, May 16-24, 2009.

[8] Khaled M.Mustafa, Rafa E. Al-Qutaish, Mohammad I.
Muhairat, “Cassification of Software testing Tools Based on

the Software Testing Methods”, 2009 second International

Conference on Computer and Electrical Engineering, 978-0-
7695-3925-6, 2009.

[9] R.S.Pressman, “ Software Engineering A Practitioner’s

Approach”, Mcgraw-Hill International Edition, ISBN 007-
124083-7.

[10] D. Marinov and S. Khurshid, "TestEra: A Novel
Framework for Automated Testing of Java Programs," in

Proc.~16th IEEE International Conference on Automated

Software Engineering

(ASE), 2001, pp. 22-34

[11] P. Tonella, "Evolutionary testing of classes," in

International symposium on Software testing and analysis

(ISSTA'04). Boston, Massachusetts, USA: ACM Press,

2004, pp. 119-128.

[12] N. K. Patrice Godefroid, Koushik Sen, "DART:
directed automated random testing," presented at PLDI '05:

Proceedings of the 2005 ACM SIGPLAN conference on
Programming language design and implementation, 2005.

[13] Dustin, E. et. al., Automated Software Testing,
Addison- Wesley, 1999.

[14] Fewster, M., Graham, D., Software Test Automation:

Effective Use of Text Execution Tool, Addison- Wesley,

1999.f

FIRST AUTHOR

Er. Rajender Kumar Ph.D Research Scholar in the deptt of

Computer Science & Mathematics from CCS University, India

.His area of specialization in Software Testing. He did

completed his master degree M.Tech from M.M.University

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 3, June 2012 www.ijcsn.org ISSN 2277-5420

Mullana in 2009. Presently working as Asstt Prof in Computer

Sc & Engg Deptt at HIET Kaithal. He has more than 40

research papers in reputed conferences and journals.

SECOND AUTHOR

Dr. M.K.Gupta is working as Professor in the Deptt of
Mathematics & Computer science at CCS University. He did

complete his doctorate degree in 1998 in the area of

Mathematics Science . He has more than 50 research papers in

a reputed journals. He got completed more than 36 candidates

of M.Phil and more than 7 candidates of Ph.D degree under his
supervision.

