
International Journal of Computer Science and Network (IJCSN) 
Volume 1, Issue 4, August 2012    www.ijcsn.org    ISSN 2277-5420 

 

 

 

Page | 53 

A Review on New Paradigm’s of Parallel Programming A Review on New Paradigm’s of Parallel Programming A Review on New Paradigm’s of Parallel Programming A Review on New Paradigm’s of Parallel Programming 
Models in High Performance ComputingModels in High Performance ComputingModels in High Performance ComputingModels in High Performance Computing    

1Mr.Amitkumar S Manekar, 2 Prof.Pankaj Kawadkar, 3Prof. Malati Nagle 

 
1 Research Scholar Computer Science and Engineering, PIES, 

 RGPV, Bhopal, M.P, India. 

 
2Computer Science and Engineering, PIES,  

RGPV, Bhopal, M.P India. 

 
3Computer Science and Engineering, PIES, 

 RGPV, Bhopal, M.P, India. 

 

 

 

Abstract 

High Performance Computing (HPC) is use of multiple 

computer resources to solve large critical problems. 

Multiprocessor and Multicore is two broad parallel 

computers which support   parallelism. Clustered 

Symmetric Multiprocessors (SMP) is the most fruitful way 

out for large scale applications. Enhancing the 

performance of computer application is the main role of 

parallel processing. Single processor performance on 

high-end systems often enjoys a noteworthy outlay 

advantage when implemented in parallel on systems 

utilizing multiple, lower-cost, and commodity 

microprocessors. Parallel computers are going main 

stream because clusters of SMP (Symmetric 

Multiprocessors) nodes provide support for an ample 

collection of parallel programming paradigms. MPI and 

OpenMP are the trendy flavors in a parallel programming. 

In this paper we have taken a review on parallel 

paradigm’s available in multiprocessor and multicore 

system. 
 

Keywords: Parallelism, MPI (Message Passing 

Interface), OpenMP, Heterogeneous (hybrid) systems, 

SMP (Symmetric Multiprocessor). 

1. Introduction 

Even as MPI has a distributed memory conceptual view, 

OpenMP is directed to the shared memory systems. In 

parallel environment with the existing merits and 

demerits of MPI and OpenMP both are co-exists with 

hybrid (OpenMP+MPI). In this work our aim is to explore 

the performance of the OpenMP/MPI and hybrid 

programming model and analysis the shared and 

distributed memory approaches, as well as the present 

heterogeneous parallel programming model. 

Microprocessor based single processing unit are facing 

heat dissipation and energy consumption issues with 

limited clock frequency and  number of jobs conducted in 

each clock period. Multi-core architectures put forward 

enhanced the performance and energy efficiency for the 

same processing unit [2]. Furthermore nowadays we have 

classified approaches one which is capable to integrate 

more than one core in to a single microprocessor 

(probably two to ten) called as multi-core approach which 

use sequential programming. Another one is many cores 

approach having built with large number of cores (as 

many as possible) basically used for parallel programming. 

Clearly, this change of paradigm has had (and will have) 

a huge impact on the software developing community. 

Parallel computers are taking over the world of computing. 

The computer industry is ready to submerge the market 

with hardware that will only run at full speed with 

parallel programs [3]. This can be largely attributed to the 

inherent complexity of specifying and coordinating 

concurrent tasks, a lack of portable algorithms, 

standardized environments, and software development 

toolkits [17]. Sequential programming is over headed due 

to stalling of clock frequency. 

Concurrency using several cores can overcome these 

issues in attendance are nothing but many and multi core 

processor using parallel ones this is also called as 



International Journal of Computer Science and Network (IJCSN) 
Volume 1, Issue 4, August 2012    www.ijcsn.org    ISSN 2277-5420 

 

 
 

concurrency revolution [4]. Scalability in terms of 

application can scale seamless automatically with number 

of processors. In this regards there are two approaches for 

doing parallelism (1) Auto Parallelism (2) Parallel 

Programming [5]. 

 

• Auto Parallelism:-Using instruction level parallelism 

(ILP) or parallel compilers sequential programs are 

automatically paralleled. Actual programs without doing 

modification is recompiled using these ILP or parallel 

compilers it has a limitation that amount of parallelism is 

very less due to complexity of automatic transformation of 

code . 

• Parallel programming approach:-Application are 

turned to exploit parallelism by partitioning the total work 

into small task, this task then mapped on the cores. It 

provides high parallelism. 

Besides of these two some typical parallelism also present 

into the computer programs i.e. data, recursive, pipelined. 

The main four phases for the parallelism is finding 

concurrency, algorithm structure, supporting structure 

and implementation mechanism. Depending on these four 

patterns or phases SPMD (single Program Multiple Data) 

- different data is used several times with respect to single 

program. Fig 1 will describe the overview of the stated 

outline model for language.  

• Master/Worker – Master process setup a poll of worker 

process and bag of task. 

• Loop Parallelism- Concurrent execution of different 

iteration of one or more loops. 

 • FORK/JOIN- Main process forks off in different 

processes that execute concurrently  until they finally join 

in single process [10]. 

 

There are two classical categories of parallel system (1) 

Shared Memory (2) Distributed Memory [8].  

 
Fig 1:- Overview of the outline language 

• Shared Memory: - A single Memory address space is 

used by all processors. Basically used in servers and high 

end workstations, today multi core processors used shared 

memory space. Fig 2 shows the shared memory 

architecture. 

 
Fig:-2 The shared memory architecture 

 

• Distributed Memory: - Each processor with its own 

serving memory blocks are the distributed memory model. 

These models work in network or a grid of computers. Fig 

3 is the distributed memory architecture. 

 
 

Fig 3:- The distributed-memory architecture 

 

2. Related Work 

Beside of this Hybrid shared with distributed memory 

system can be used. The conventional parallel 

programming practice involves a pure Shared Memory 

Model [8]. Usually using the OpenMP API [11], in shared 

memory architecture, or a pure message passing model [8] 

using MPI API [12], on distributed memory system 

[1].old approach of doing parallelism involves pure 

shared memory models [8]. Usually in shared memory 

architecture uses of OpenMP API [11]. For distributed 

MPI API once [12]. In this paper we revive the parallel 

programming models in high performance computing 

(HPC) with classification of parallel programming models 

used today. 

 

2.1 Classification of Parallel Programming Model 

Doing Parallelism is not specific for any hardware 

boundaries, the reason behind this is today many 

processors can put together to achieve parallelism. This 

provide flexibility for generate parallel programs with 

maximum efficiency and appropriate balance in 

communication and computational model. General 

purpose computation GPUs in multicore system lead to 



International Journal of Computer Science and Network (IJCSN) 
Volume 1, Issue 4, August 2012    www.ijcsn.org    ISSN 2277-5420 

 

 

heterogonous parallel programming (HPP) models. 

Depending on all these multicore architecture different 

parallel programming models lead to hybrid model called 

as hybrid parallel programming model. 

In conventional programming approach OpenMP [6] for 

shared memory and MPI for distributed memory i.e. 

classical or pure parallel models are available. With 

availability of using new processor architecture multicore 

CPU and many core GPUs gives us heterogeneous parallel 

programming models, also partitioned global address 

space (PGAs) model in distributed environment using 

global memory space is available. So architecture 

available prompts us for hybrid, shared distributed 

memory with GPUs model.  One more thing should be in 

consideration with these about available programming 

language. Let’s have a look of all these. 

 

3. Pure Parallel Programming Language 

Models 
Classification of parallel programming models using a 

pure shared or distributed memory approach., shared 

memory OpenMP, and distributed memory Message 

Passing models(MPI)  is a specification for message 

passing operations [7], [14], [15], [16]. Table 1 collects 

the characteristics of the usual implementations of these 

models 

TABLE-1   PURE PARALLEL PROGRAMMING MODELS 

IMPLEMENTATIONS [9]. 

Implementation OpenMP MPI 

Programming 

Model 

Shared 

Memory 

Message Passing 

System 

Architecture 

Shared 

memory 

Distributed and 

shared Memory 

Communication 

Model 

Shared 

memory 

Massage passing or 

shared address 

Granularity Fine Course-fine 

Synchronization Implicit Implicit or Explicit 

Implementation Complier Library 

 

3.1 Shared Memory OpenMP 

Based on the compiler directives ,library routines and 

environment variables it is used to form parallelism on 

shared memory machines, it’s an a industry standard 

directives  guide the compiler which region is execute in 

parallel together with some instruction. This model use 

fork and join. 

Characteristics:- 

• OpenMP codes will only run on shared memory 

machines 

• Not Portable 

• Permits both courses gain and fine gain parallelism. 

• User directives which help the compiler parallelized the 

code. 

• Each thread sees the same global memory. 

• Implicit messaging. 

• Use fork-join model for parallel computation. 

Limitation:- 

• OpenMP works only for shared memory. 

• Limited scalability, not much speed up. 

• Threads are executed in a non deterministic order. 

• OpenMP requires explicit synchronization [18] 

 

3.2 MPI (Message Passing Interface) 

In distributed memory model with explicit control MPI 

gives parallelism. Every process are associated with read 

and write operation with respective their local memory. 

Appropriate subroutine call is used to copy data for each 

process from their local memory.MPI is define as a set of 

function and procedures. 

Characteristics:- 

• MPI runs on both distributed and shared memory       

model. 

• Portable. 

• Particular adaptable to coarse grain parallelism. 

• Each process has its own memory. 

• Explicit Messaging. 

Limitation:- 

• In MPI communication can often create a large overhead, 

which needs to be minimized. 

• Global operations can be very expensive. 

• Significant change to the code is often required, making. 

• Transfer between the serial and parallel code difficult. 

• In MPI dynamic load balancing is often difficult [13]. 

 

3.3 Hybrid (OpenMP+MPI) 

Hybrid rational model takes both advantages from the 

MPI/OpenMP. It achieves simple and fine-grain 

parallelism with explicate decomposition of task 

placement. Both MPI and OpenMP are industry standard 

so it takes advantages of its portability on SMP Clusters.  

Characteristics:- 

• Match Current hardware trend. 



International Journal of Computer Science and Network (IJCSN) 
Volume 1, Issue 4, August 2012    www.ijcsn.org    ISSN 2277-5420 

 

 
 

• Support two levels of parallelism for application both 

coarse-grained (MPI) and fine-grained (OpenMP). 

• Limitation of MPI (scalability) is overcome by adding 

OpenMP. 

• Assign different no threads by OpenMP for load 

balancing to achieve synchronization. 

Limitation:- 

• Programming overhead as mixed mode implementation. 

• Not a solution to all parallel programs but quite suitable 

for certain algorithms [13]. 

4. Conclusions 

This survey work is based on modern parallel 

programming model, from this study it is clear that 

available multi core and many core models with efficient 

parallelism provide arena to trend computer science 

curricular.  

 In our study we observed that MPI i.e. distributed 

memory model is a main sharing partner that’s why 

distributed memory parallel programming approach is 

huge demanding in last decade with MPI library 

standards. Also it has been observer that OpenMP have 

continual progress in HPC with shared memory model. 

Among all different approaches MPI for distributed 

memory and OpenMP for shared memory are useful. 

References 
 [1] J. Diaz, C. Munoz-Caro and A. Nino: A Survey of 

Parallel Programming Models and Tools in the Multi and 

Many-core Era, IEEE, Parallel and distributed system, 

Vol- 23 no 8 pp 1369-1386. Aug, 2012. 

 

[2] D. Kirk and W. Hwu. Programming Massively 

Parallel Processors: A Hands-on Approach, Morgan 

Kaufmann, San Francisco, 2010. 

 

[3] H. Sutter, J. Larus. “Software and the Concurrency 

Revolution”,ACM Queue, vol. 3, no. 7, pp. 54-62, 2005 

 

[4] H. Kasim, V. March, R. Zhang and S. See. “Survey on 

Parallel Programming Model”, Proc. of the IFIP Int. Conf. 

on Network and Parallel Computing, vol. 5245, pp. 266-

275, Oct. 2008. 

 

[5] B. Chapman, G. Jost, R. van der Pas, Using, OpenMP: 

Portable Shared Memory Parallel Programming. MIT 

Press, 2007. 

 

[6] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, 

L. Torczon and A. White. The Sourcebook of Parallel 

Computing, Morgan Kaufmann Publishers, San Francisco, 

2003.  

 

[7]   M. J. Sottile, T. G. Mattson and C. E. Rasmussen, 

Introduction to Concurrency in Programming Languages. 

CRC Press, 2010. 

 

[8] OpenMP. “API Specification for Parallel 

Programming”,  http://openmp.org/wp/openmp-

specifications. Oct. 2011. 

 

[9] T. G. Mattson, B. A. Sanders and B. Massingill. 

Patterns for Parallel Programming. Addison-Wesley 

Professional, 2005. 

 

[10] OpenMP. “API Specification for Parallel 

Programming”,http://openmp.org/wp/openmp-

specifications. Oct. 2011. 

 

[11]   W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. 

Lusk, B. Nitzberg, W. Saphir and M. Snir, MPI: The 

Complete Reference, 2nd Edition,Volume 2 - The MPI-2 

Extensions. The MIT Press, Sep. 1998. 

 

[12] Sandip V.Kendre, Dr.D.B.Kulkarni: Optimized 

Convex Hull With Mixed (MPI and OpenMP) 

Programming On HPC, IJCA (0975 –8887), Volume 1 –

No. 5,2010 

 

 [13] P. S. Pacheco, Parallel Programming with MPI, 

Morgan Kaufmann, San Francisco, 1996. 

 

[14] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: 

Portable ParallelProgramming with the Message-Passing 

Interface, 2nd ed. MIT Press,Cambridge, MA, 1999 

 

[15]   W. Gropp, E. Lusk, and R. Thakur, Using MPI-2: 

Advanced Features of the Message-Passing Interface. MIT 

Press, Cambridge, MA, 1999. 

 

[16] A Grama,A Gupta: An Introduction to Parallel 

Computing: Design and Analysis of Algorithms 2nd  

Edition. Pearson Publication 2007. 

[18] Nadia Ameer,EPCC, A Microbenchmark Suite for 

Hybrid Programming,sep,2008 

 

 


