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Abstract 
As embedded applications are processing increasingly larger data 
sets,keeping their memory space consumptions under control is 
becoming a verypressing issue. Observing this, several prior 
efforts have considered memoryspace reduction techniques (in 
both hardware and software) based on data compression and 
lifetime-based memory recycling. In this work,we propose and 
evaluate an alternate approach to memory space saving in multi-
core embedded architectures such as chip multiprocessors. The 

uniquecharacteristic of our approach is that it recomputes the 
results of selecttasks in a given task graph (which represents the 
application), instead of storing these results in memory 
andaccessing them from there as needed. Our approach can work 
under a givenperformance degradation bound and reduces 
memory space requirements underthis bound. Our experimental 
resultsare very encouraging and show that the proposed 
approachreduces memory space requirements of our task graphs 

by as much as 19.5%,the average savings being around 11.3%. 
 

Keywords:Memory Space Reduction, Task Recomputation, 

Multi-core Architecture, Embedded Systems. 

1. Introduction 

Memory space consumption is an important metric to 

optimize for many embedded designs with tight memory 

constraints. While this is certainly true for both code and 

data memory, the rate at which the data sizes of embedded 

applications increase far exceeds the rate at which their 

code sizes increase. As a result, optimizing for data 

memory size is becoming increasingly more important 

than optimizing for code memory size. Several research 

papers aimed at reducing the data space requirements of 

embedded designs and proposed different techniques that 
can be adopted by optimizing compilers and design 

synthesis tools. These techniques range from compressing 

data [2, 28] to lifetime based memory reuse analysis [1, 16, 

24] to code restructuring for memory reuse [13, 14, 15, 25]. 

 

 

This paper proposes a novel approach for reducing 

memory space consumption based on task recomputation.  
The basic idea is to reduce memory space demand by 

recomputing select tasks (in a task graph representation of 

the program) whenever their results are needed, instead of 

storing those results in memory (after their first 

computation) and accessing them from memory. While 

this approach can reduce memory demand, performing 

frequent recomputations can also lead to an increase in 

overall execution latency. In other words, there is a clear 

tradeoff between performance and memory space 

consumption. Consequently, this approach should be 

applied with care to select tasks only. Working on a task 

graph representation of a given embedded application, we 
propose a fully-automated scheme that identifies the tasks 

to recompute in such a way that the potential negative 

impact on execution time is minimized.  

 

Focusing on an embedded multi-core architecture, the 

proposed approach first identifies thecritical paths in the 

task graph under consideration. It then marks all the tasks 

that sit in the critical paths as non-recomputable, meaning 

that these tasks are computed only once andtheir results 

are stored in memory for future use as long as they are 

needed. The remaining tasks, i.e., those that are not in the 
critical path, are marked as recomputable. The restof our 

approach traverses the tasks marked as recomputable and 

selects a subset of them (to be recomputed) such that the 

overall increase in execution latency is bounded by apreset 

value (typically, a designer-specified parameter). A 

particularly interestingoptimization problem that can be 

instantiated from our general problem description is to 

minimize the memory space requirements (by maximizing 

task recomputation) without increasing the original 

execution latency (i.e., the latency that would be obtained 

when no taskrecomputation is used). This can be made 
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possible by not allowing any path in the taskgraph to have 

a latency which is larger than that of the critical path.  

 

We implemented our approach and tested it using eleven 

different task graphs (both automatically generated and 

extracted from applications). Our experimental analysis 
shows that the proposed approach can be used as a 

practical tool for studying the performance/memory space 

consumption tradeoffs in embedded designsthat 

accommodate a multi-core architecture. Specifically, for 

the example task graphs in our experimental suite, we 

found that our approach can reduce memory requirements 

by about 11.3% on average without any increase in 

original execution latency. Also, with a 20% allowable 

increase in original execution latency, we were able to 

increase our memory savings by up to 24.5%. Our 

experimental analysis also shows that this 

taskrecomputation based approach is effective with both 
unoptimized designs and designs that have already been 

optimized (based on data lifetime analysis). 

 

The remainder of this paper is organized as follows. We 

revise the previous work on memoryspace optimization in 

Section 2. In Section 3, we illustrate, through an example, 

how task recomputation can save memory space. A formal 

description of our algorithm that recomputes select tasks 

every time their results are needed is given in Section 4. 

Our experimental results obtained using eleven task graphs 

are presented in Section 5. Finally, Section 6 concludes the 
paper and points out the future research directions onthis 

topic. 

2. Related Work 

Prior research considered data reuse and data lifetime 

analysis as potential solutions to the memory space 

optimization problem. Most of these approaches are based 

on loop level transformations [13, 14, 15, 25, 26] that 
modify the order of execution of loop iterations to use the 

memory hierarchy effectively. McKinley et al [19] present 

an approach to perform necessary loop transformations 

that exploit the inherent spatial and temporal reuse 

available in the program. Liu et al [18] present a loop 

fusion algorithm based on the loop dependency graph 

model. Several approaches have been proposed for 

reducing data space requirements of embedded 

applications by analyzing the lifetimes of variables [3, 4, 

29]. Catthoor et al [3] showed how loop fusion can be used 

for minimizing data space requirements. An algorithm to 
accurately estimate the minimum memory size for array 

intensive applications is proposed in [29]. Based on live 

variable analysis, Zhao and Malik [29] transform the 

memory size estimation into an equivalent mathematical 

problem which can be solved by integer point 

counting.Hicks [9] proposed a compiler-directed storage 

reclamation scheme using object lifetime analysis which 

performs garbage collection by having the compiler insert 

deallocation code. 

 

Data space optimizations have also been investigated by 
many researchers. Palem et al [22] proposed data 

remapping for pointer-intensive dynamic applications to 

decrease the memory requirements along with energy 

consumption. In their MDO work [12], Kulkarni et al aim 

at obtaining a data layout which has the least possible 

conflict misses. A combination of both loop and data 

transformations has also been explored by different 

research groups [10, 21].Kandemir et al [10] describe a 

compiler algorithm that considers loop and data layout 

transformations in a unified framework for optimizing 

cache locality on uniprocessor and multiprocessor 

machines. On the other hand, O'Boyle and Knijnenburg 
[21] propose an extended algebraic transformation 

framework to eliminate the temporary copies. 

 

Compression techniques have also been used to reduce the 

memory footprint of both program code and application 

data.Cooper and McIntosh [5] uses pattern-matching to 

coalesce the instruction sequences to reduce the size of the 

compiled code.In VLIW architectures, Ros and Sutton [23] 

applied code compression algorithms to instruction words. 

Methods that use profile information have been proposed 

as well [7]. Code compression has also beenapplied to 
VLIW architectures that use Variable-to-fixed (V2F) 

coding [27]. An extension to this approach, called the 

variable-sized-block method, is presented by Lin et al [17]. 

Prior data compression related efforts include both 

hardware and software approaches. Benini et al [2] 

propose a hardware-assisted data compression that uses 

on-the-fly data compression and decompression. A first 

level cache compression technique is proposed in Yang et 

al [28] to reduce the number of cache miss as well as miss 

penalty.  

 

Data recomputation is utilized in [11] for saving memory 
space. As compared to this prior effort, our work focuses 

on a multi-core architecture and proposes a fast heuristic 

solution. In comparison, the work in [11] considers a 

single CPU based system and uses integer linear 

programming (ILP). Also, recomputation is used in [30] to 

improve performance of chip multi-processors and in [31] 

to minimizing write activities to non-volatile memories. 

3. Task Recomputation 

In our approach, we use the task graph representation of a 

given embedded application. A task graph is a directed 

acyclic graph where nodes are tasks and edges represent 
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the dependencies among these tasks. An edge from task ti 

to task tj indicates that the data computed by ti is used by tj. 

Since the execution latency of such a task graph is 

determined by the critical path(s), depending on the 

properties of the task graph, it might be possible to 

perform recomputations without incurring performance 
overhead. Let us consider the example task graph given in 

Figure 1 with 9 tasks running on an embedded multi-CPU 

(chip multiprocessor) architecture with two homogeneous 

processor cores. The execution latency of each task is also 

shown on theright hand side of the same figure. Based on 

these latencies, the critical path in this example is 1-3-5-6-

7-8, which has a total execution latency of 73.  

 
Fig. 1: An example task graph with 9 tasks. The source and the sink 

nodes are not shown. 
 
The corresponding schedule for this task graph (without 

any recomputations) is shown in Figure 2(a).As can be 

seen, CPU2 is idle more than half of the execution, which 

indicates a possible recomputation opportunity without 

increasing the original execution latency. Assuming that 

each task consumes 10 units of memory space to store its 

results and we do not employ any lifetime based memory 

space recycling (i.e., no automatic garbage collection), the 

total memory space required for storing the data 

manipulated will be 90 (10 × 9) units. By exploiting 

lifetime analysis, on the other hand, one can come up with 
a better memory behavior. This can be achieved by using a 

conflict graph [20] and applying graph coloring algorithm 

[20, 6] to this conflict graph to identify the tasks whose 

lifetimes do not overlap.Note that this problem is slightly 

different from the conventional register allocation problem 

since each task can have different memory requirements. 

Then, the number of colors returned gives the minimum 

number of tasks that need to store their results. For the 

above example, four memory spaces will be needed if such 

a lifetime analysis is employed, reducing the total memory 

space requirement from 90 to 40. However, further 

reductions in the memory space requirements can be 
achieved using recomputations by exploiting the idle 

periods that appear in the schedule of CPU2. Consider, for 

instance, the idle period (t=24-42) between tasks t4 and t9 

scheduled on this CPU. Since t4 is the only task that 

requires the output of task t1 after t=10, the t1's output will 

not be needed if we recompute task t1 right before 

computing t4. This way we can further reduce the memory 

space requirement from 40 to 30.The resulting schedule is 

shown in Figure 2(b). As can be seen, the total execution 
latency is not affected by this recomputation. That is, it is 

possible to reduce memory space requirements of the task 

graph by carefully recomputing the select tasks without 

incurring any performance penalty. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2: An example scheduling scenario for a two CPU system. The x-

axis corresponds to the execution time. (a) Schedule without any 

recomputations. (b) Schedule when recomputation is employed without 

any increase in the original execution latency. (c) Schedule when 

recomputation is employed with a maximum of 5% allowable increase in 

the original execution latency. 

 

Although there might be different recomputation 

possibilities in a given schedule, not all of them can reduce 

the memory space requirements and not all of them come 

without performance overheads. On the other hand, in 
some cases, one can tolerate an increase in execution 

latency up to a certain level which can be captured by a 

preset value, a designer-specified parameter. Figure2(c) 

illustrates how we can achieve further savings in memory 

space requirements of our example task graph when a 

maximum of 5% increase in execution latency is allowed. 

In this case, it is sufficient to keep the outputs of only two 

tasks in memory at the same time, reducing the memory 

space requirement from 30 units to 20 units. The 

performance overhead incurred due to recomputing task t2 

before task t8 is 3, i.e., the total execution latency is 
increased from 73 to 76, as depicted in Figure 2(c).  

 

It is important to note that a task ti does not need to be 

recomputed every time its output is needed by some other 

task tj. Instead, it is possible to recompute task ti initially a 
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couple of times, and then storing its result in memory 

when recomputation is no longer beneficial. Let us 

consider the example task graph given in Figure 3(a). 

Tasks t3, t4, and t5 in this graph all depend on the output of 

task t1. Based on the corresponding schedule shown in 

Figure 3(b), task t3 immediately uses the output generated 
by t1. However, tasks t3 and t5 will receive the output of t1 

 
(a) 

 
(b) 

Fig. 3: An example task graph and task execution latencies (a) and the 

corresponding schedule with recomputations (b). 

either through recomputation (of task t1) or from the 

memory. For task t4, recomputation without any increase 

in the total execution latency is possible. On the other hand, 

this is not the case for task t5. As this example illustrates, 

some of the tasks can use recomputation to obtain their 

inputs, whereas some others can obtain the same inputs 

through the memory at different points in the execution of 

the task graph.Overall, this discussion shows that 

recomputation can be an effective means of reducing 

memory space requirements of applications executing on 

multi-CPU embedded systems. The next section presents 
and discusses our recomputation algorithm. 

4. Details of Our Approach 

While the previous section explains our approach at a high 

level, in this section, we discuss the details of the proposed 

approach. Algorithm 1 gives a sketch of our approach.  

This program takes five inputs, namely, the task graph in 

question (TG(V,E)) , the number of processors (P), the 
original execution latency (L) without any recomputation, 

the number of recomputation levels (R-Level), and the 

performance overhead allowed (OA), and it returns, as 

output, the new schedule with recomputation. It is 

important to note that we start by a schedule which has 

been obtained from a performance-oriented task 

scheduling algorithm. The reason for this design choice is 

to minimize the impact of our approach on performance. 

In other words, we would like to keep our modifications to 

the schedule with the best performance at minimum. 

TG(V,E) denotes a task graph scheduled with respect to 

performance constraints, where V={v1,v2, …, vn} is the 

vertex set representing the tasks and E={e1, e2, …, ek} is 
the edge set representing the dependencies among these 

tasks. Notice that the tasks in V are ordered starting from 

the closest task to the sink. Based on this order, the slack 

value for each task is calculated. Note that the slack for a 

task indicates the amount of extra latency it can tolerate 

without affecting the overall execution latency of the task 

graph being analyzed.R-Level indicates the maximum 

number of subsequent recomputations allowed to execute a 

task. Also, the value of global benefit (denoted G-Benefit 

in the algorithms) obtained by exploiting recomputations 

is initialized to 0. 

 

Algorithm 1Memory Optimization 
1. Input: TG(V,E), P, L, R-Level, and OA 
2. Output: Schedule with recomputation 
3. G-Benefit = 0 

4. for alli∈ |V|do 

5. Order task vi 

6. end for 

7. for alli∈ |V|do 

8. Calculate slack for vi 

9. end for 

10. for alli∈ |V|do 

11. Determine all the paths to the source originating from vi 
12. Construct Recompute Set for each path if possible 
13. Search Best (vi, R-Level, OA, 0) 

14. end for 
 

For each node of the given task graph, the Memory 

Optimization algorithm looks for the potential 

recomputation patterns.This is achieved by a call to a 

function named Search Best, which recursively tries to 

perform recomputations based on the slacks in the task 

graph and the specified performance overhead. Algorithm2 

gives the sketch of this function.This function takes the 

task (V), the number of recomputation levels (Level), the 

performance overhead allowed (OA), and the memory 

benefit brought by the current recomputation path so far 

(MB). When Search Best is invoked from the Memory 

Optimization function, it is passed the maximum number 

of recomputations allowed and the maximum overhead 
possible. The initial memory benefit is passed as 0. Then, 

Search Best traverses all the predecessors of the given 

node (V). First, it computes tdiff, which is the difference 

between the end of the lifetimes of the current node (V) 

and its predecessor (vi). This indicates whether 

recomputing vi is beneficial or not. If another task (other 

than V) is using the same output, (i.e., the results of vi will 

be kept in the memory in any case), the lifetime of vi may 

go beyond that of V, which suggests that recomputing vi is 
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not beneficial in terms of saving additional memory space. 

As can be seen, if tdiff is less than 0, the recursion does not 

go any further. The second constraint checked by this 

function is whether the slack of the current task is long 

enough to accommodate a recomputation. This is checked 

by Vslack≥vi.exec. If it is possible to recompute vi within the 
slack time of V, the memory space saving (MB-new)  

 

Algorithm 2Search Best 
1. Input: V, Level, OA, MB 

2. Output: Optimum Recomputation 

3. for alli∈ |Pred{V}|do 

4. tdiff ← V.end - vi.end 

5. iftdiff> 0 then 
6. if (Vslack ≥ vi.exec) or (OA permits vi.exec - Vslack) then 
7.  MB-new ← MB + vi.exec × vi.memory 
8.  OA-new ← update OA 
9.  if MB-new > G-Benefit then 
10.   G-Benefit ← MB-new 
11.   Add v to the recomputation list 

12.   Update scheduling accordingly 

13.  end if 

14. end if 

15. end if  
16. if (tdiff> 0) and (Level > 0) then 
17. if (Vslack ≥  vi.exec) or (OA permits vi.exec - Vslack) then 
18.  Search Best(vi, Level-1, OA-new, MB-new) 

19.  end if 

20. end if 

21. end for 

 

brought by this recomputation (in addition to the possible 

previous recomputation(s)) is calculated. This value is 

obtained based on the parameter passed to the function 
(MB), that is, the memory savings brought by the previous 

recomputations. If this is the first recomputation in the 

path, this value is 0. Although there might be different 

criteria to select the recomputations to perform (from 

among the set of all possible recomputations), we use time 

× memory as the metric for memory space savings, where 

time is the reduction in lifetime of the task's output and 

memory is the corresponding task's memory consumption. 

While we prefer not to increase the overall execution 

latency, in some execution environments it might be 

possible to tolerate up to a certain performance overhead, 

which is given as OA in this algorithm. If it is possible to 
recompute the task under consideration within the 

tolerated performance overhead bound, it is recomputed 

and the overhead allowed (OA) is updated accordingly. 

This value is then passed to the next Search Best function 

call. In order to decide whether we can continue 

performing recomputations in the current path, we check 

whether the maximum number of 

subsequentrecomputations allowed has been reached or 

not (in addition to the conditions discussed above). 

 

It is important to emphasize that, using this algorithm, all 

of the legal paths from a lower level node to a higher level 

node in the task graph are evaluated for possible 

recomputations. If performing one or more recomputations 

on a path reduces the memory consumption, this reduction 

is stored in G-Benefit and the corresponding path is 
recorded as well. Among these paths, the one that brings 

the maximum memory space savings is chosen. 

 

Let us now discuss how this algorithm operates on the task 

graph shown in Figure 1. Given the performance-

scheduled graph, our algorithm calculates the time slack 

for each task. For example, since CPU2 is idle for t=24-42 

and there is no task succeeding node 4 in the task graph, 

the slack for task v4 is 18. Then, checking every 

predecessor of each node, a Recompute Set is constructed 

for each path to source. In this example, since v4 has a path 

to source through v1 and has enough slack available, (4, 1) 
is the recompute set for v4. On the other hand, v5 has no 

element in its recompute set. If it had time slack available, 

it could have (5, 2), (5, 3), (5, 2, 1) and (5, 3,1) in its 

recompute set. Next, the algorithm calls the recursive 

function Search Best to determine if the recomputation 

brings any memory saving. The function also determines 

the most efficient recompute set among all sets if there is 

more than one. In our example, it takes into account the 

recomputation for the set (4,1) and updates the schedule 

and required parameters for memory. 

5. Experimental Evaluation 

Our goal in this section is to present an experimental 

evaluation of the proposed recomputation based approach. 

For this purpose, we used both automatically-generated 

task graphs and task graphs extracted from benchmarks. 

For the first part, we used the TGFF tool [8] and generated 

several task graphs. Unless otherwise stated, we assumed 

10 processors in our experiments.Also, in our experiments, 
each task has a latency value between 7-20 units, and uses 

a memory size of 4-15 units.We made experiments with 

two groups of automatically-generated task graphs. Our 

first group of task graphs (tg1 through tg4) have the same 

edges/node ratio, but each with different number of nodes 

and edges. Thesecond group of task graphs (tg5 through 

tg7) on the other hand is comprised of graphs with 

different edges/noderatios. The reason that we make 

experiments with these two different sets oftask graphs is 

to evaluate the behavior of our approach under the 

differentscenarios. The important characteristics of our 
task graphs are given inTable1. The first column of this 

table gives the name of the task graph and the next two 

columns give the number of nodes and edges in the graph. 

The fourth column of the table shows the total sizeof the 

data manipulated by the nodes of the task graph when no 
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memory spacesaving technique is employed. The next 

column of Table 1 onthe other hand gives the amount of 

data space requirements when a lifetime based memory 

space recycling is used. In this scheme, the memory 

spaceallocated for storing the results of a task is recycled 

when the data storedare no longer needed. When 

comparing these two columns of this table, wesee that a 

lifetime analysis based memory space recycling cuts the 

memoryspace requirements by 49.5% on the average. Our 

goal is  
Table 1: Task Graphs and their important characteristics.

Task Graph 

Label 

Number of 

Nodes 

Number of  

Edges 

Data Size 

(No Opt.) 

Data Size 

(Lifetime Ana.) 

Latency 

tg1 11 16 86 47 51 

tg2 14 19 136 59 37 

tg3 20 30 184 94 73 

tg4 31 45 306 139 71 

tg5 20 40 192 99 75 

tg6 21 50 180 92 83 

tg7 20 60 195 110 131 

 

to further increasememory space savings through task 

recomputation. Finally, the last column of the Table 1 

shows the execution latency of each task graph when 

norecomputation is used. In the rest of thissection, all 

memory saving results are given as normalized values 

withrespect to the corresponding values in the fifth column 

ofTable 1 (i.e., over the lifetime based approach). 

Similarly, the performance overheads (if any) incurred by 
our approach are given as normalized values with respect 

to the corresponding valueslisted in last column of this 

table.  

 

The bar-chart in Figure 4 shows the normalized memory 

spacesavings obtained by our recomputation-based 

approach for our task graphs. Inthese experiments, we use 

the version of our approach (whose pseudo-code isgiven in 

Algorithm1) that does not increase the originalexecution 

latency. We seethat our approach reduces the memory 

space requirements by 13.6% for thefirst groupof task 
graphs and 6.5% for the second group of task graphs.These 

results clearly show the effectiveness of our approach in 

reducingmemory space requirements and the important 

point we want to emphasize here is that these savings 

come at no performance cost. 

 

In our next set of experiments, we study the tradeoff 

between memory spacesaving and performance overhead 

by allowing our approach to tolerate certain(specified) 

increase in original execution latency. That is, we test 

ourapproach whose pseudo-code is given inAlgorithm 2. 

We see from the results given inFigure 5 (which are given 
for two of our task graphs) that, by tolerating 20% increase 

in original execution latency, we can save 24.5%memory 

space. This gives the designer to perform a tradeoff 

analysis betweenmemory space savings and performance 

overheads. 

 
(a) 

 
(b) 

Fig. 4: Normalized memory requirements of our approach for the task 

graphs in Table 1. 
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Fig. 5: Normalized memory requirements with varying performance 

overheads. 

 
Fig. 6: Normalized memory requirements for the task graphs extracted 

from benchmarks. 

 
Fig. 7: Normalized memory requirements with different number of CPUs. 
 

In addition to these task graphs generated by the TGFF 

tool, we alsoperformed experiments with the task graphs 

extracted from several embedded applications. The 

normalized memory requirements for this set of task 

graphs are given in Figure 6 for the case when no increase 

in the original execution latencies is tolerated. We see that 

our recomputation based approach is very effective in 

reducing memory space requirements of these task graphs 

as well, achieving an average memory saving of 13.9%. 
 

We next evaluate the behavior of our approach when the 

number of CPUs is varied. Recall that the default number 

of CPUs used so far in our experiments was 10. As before, 

we focus only on task graphs tg2 and tg3. Allowing no 

increase in original executionlatency, Figure 7 gives the 

memory space savings (over the versions that uselifetime 

based analysis) under different number of CPUs. We 

observe from these results that, as the number of CPUs 

increases, the normalized memory requirement of the 
application decreases. However, after reaching a CPU 

count that handles all the concurrent paths in the task 

graph, increasing the number of CPUs further will not 

affect the memory requirement, as seen in the figure for 

tg3. 

6. Conclusion and Future Work 

The main contribution of this paper is a novel memory 
space saving schemefor embedded multi-CPU systems. 

Starting with a task graph scheduled for thebest 

performance, the proposed approach identifies a set of 

tasks andrecomputes their results every time they are 

needed (instead of computingthem once, storing their 

results in memory and accessing those results from 

memory whenever needed). Weperformed experiments 

with several task graphs (that represent different execution 

scenarios) and the results obtained sofar show the 

effectiveness of this recomputation based approach. 

Specifically, our experimental analysis shows that we can 
save significant memory space (over a lifetime based 

approach) without incurring any performance penalty. Our 

approach also works under the cases where a certain 

performance penalty can be tolerated. Our futurework 

involves extending this idea to a dynamic compilation 

environment wherethe recomputation decisions are taken 

at runtime by a dynamic compiler. 

 

References 
[1] D. A. Barrett and B. G. Zorn. Using lifetime predictors to 

improve memoryallocation performance. In Proceedings of 

the ACM Conference onProgramming Language Design and 
Implementation, pages 187–196, 1993. 

[2] L. Benini, D. Bruni, A. Macii, and E. Macii. Hardware-
assisted datacompression for energy minimization in systems 
with embedded processors. InProceedings of the Conference 
on Design, Automation and Test in Europe, page449, 2002. 

[3] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P. 
Kjeldsberg, T. V.Achteren, and T. Omnes. Data Access and 
Storage Management for Embedded Programmable 

Processors.Kluwer Academic Publishers, Boston, MA, 
USA,2002. 

[4] F. Catthoor, E. de Greef, and S. Suytack. Custom Memory 
ManagementMethodology: Exploration of Memory 
Organization for Embedded MultimediaSystem Design. 
Kluwer Academic Publishers, Norwell, MA, USA, 1998. 

[5] K. D. Cooper and N. McIntosh. Enhanced code compression 
for embedded RISC processors. In Proceedings of the ACM 

Conference on Programming LanguageDesign and 
Implementation, pages 139–149, 1999. 



International Journal of Computer Science and Network (IJCSN) 
Volume 1, Issue 5, October 2012www.ijcsn.org    ISSN 2277-5420 

 

 
 

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction 
to Algorithms.The MIT Press/McGraw-Hill, Cambridge, MA, 
USA, 2001. 

[7] S. Debray and W. Evans. Profile-guided code compression. In 
Proceedings ofthe ACM Conference on Programming 

Language Design and Implementation,pages 95–105, 2002. 
[8] R. P. Dick, D. L. Rhodes, and W.Wolf. TGFF: Task Graphs 

For Free. InProceedings of the International Workshop on 
Hardware/Software Codesign,pages 97–101, 1998. 

[9] J. Hicks. Experiences with compiler-directed storage 
reclamation. InProceedings of the Conference on Functional 
Programming Languages andComputer Architecture, pages 
95–105, 1993. 

[10] M. Kandemir, J. Ramanujam, and A. Choudhary.Improving 
cache locality by a combination of loop and data 
transformations. IEEE Transactions onComputers, 
48(2):159–167, 1999. 

[11] M. T. Kandemir, F. Li, G. Chen, G. Chen, and O. 
Ozturk.Studyingstorage-recomputation tradeoffs in memory-
constrained embedded processing.In Design, Automation and 
Test in Europe Conference, pages 1026–1031, 2005. 

[12] C. Kulkarni, F. Catthoor, and H. D. Man. Advanced data 
layout optimization formultimedia applications. In 
Proceedings of the IPDPS Workshops on Paralleland 
Distributed Processing, pages 186–193, London, UK, 
2000.Springer-Verlag. 

[13] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache 
performance andoptimizations of blocked algorithms. In 
Proceedings of the InternationalConference on Architectural 

Support for Programming Languages andOperating Systems, 
pages 63–74, 1991. 

[14] W. Li. Compiling for Numa Parallel Machines. PhD thesis, 
Ithaca, NY, USA,1993. 

[15] W. Li and K. Pingali. A singular loop transformation 
framework based onnon-singular matrices. International 
Journal Parallel Program, 22(2):183–205,1994. 

[16] H. Lieberman and C. Hewitt. A real-time garbage collector 
based on thelifetimes of objects. Commun. ACM, 26(6):419–

429, 1983. 
[17] C. H. Lin, Y. Xie, and W.Wolf. LZW-based code 

compression for VLIW embedded systems. In Proceedings of 
the Conference on Design, Automationand Test in Europe, 
page 30076, 2004. 

[18] M. Liu, Q. Zhuge, Z. Shao, and E. H.-M.Sha.General loop 
fusion techniquefor nested loops considering timing and code 
size. In Proceedings of theInternational Conference on 

Compilers, Architecture, and Synthesis forEmbedded 
Systems, pages 190–201, 2004. 

[19] K. S. McKinley, S. Carr, and C.-W.Tseng.Improving data 
locality with looptransformations. ACM Transactions on 
Programming Languages and Systems,18(4):424–453, 1996. 

[20] G. D. Micheli. Synthesis and Optimization of Digital 
Circuits.McGraw-HillHigher Education, 1994. 

[21] M. F. P. O’Boyle and P. M. W. Knijnenburg.Integrating 

loop and datatransformations for global optimization. Journal 
of Parallel and DistributedComputing, 62(4):563–590, 2002. 

[22] K. V. Palem, R. M. Rabbah, I. Vincent J. Mooney, P. 
Korkmaz, andK. Puttaswamy. Design space optimization of 
embedded memory systems viadata remapping. In 
Proceedings of the Joint Conference on Languages,Compilers 
and Tools for Embedded Systems, pages 28–37, 2002. 

[23] M. Ros and P. Sutton. Code compression based on operand-
factorization forvliw processors. In Proceedings of the 
Conference on Data Compression, page559, 2004. 

[24] C. Ruggieri and T. P. Murtagh.Lifetime analysis of 
dynamically allocatedobjects. In Proceedings of the ACM 

SIGPLAN-SIGACT Symposium onPrinciples of 
Programming Languages, pages 285–293, 1988. 

[25] L. Wang, W. Tembe, and S. Pande.Optimizing on-chip 
memory usage throughloop restructuring for embedded 
processors. In Proceedings of the InternationalConference on 
Compiler Construction, pages 141–156, 2000. 

[26] M. J. Wolfe. High Performance Compilers for Parallel 
Computing.Addison-Wesley Longman Publishing Co., Inc., 

Boston, MA, USA, 1995. 
[27] Y. Xie, W.Wolf, and H. Lekatsas.Code compression for 

VLIW processors usingvariable-to-fixed coding. In 
Proceedings of the 15th International Symposiumon System 
Synthesis, pages 138–143, 2002. 

[28] J. Yang, Y. Zhang, and R. Gupta. Frequent value 
compression in data caches. InProceedings of the 33rd 
Annual ACM/IEEE International Symposium 

onMicroarchitecture, pages 258–265, 2000. 
[29] Y. Zhao and S. Malik. Exact memory size estimation for 

array computationswithout loop unrolling. In Proceedings of 
the 36th ACM/IEEE Conference onDesign Automation, 
pages 811–816, 1999. 

[30] H. Koc, M.Kandemir, E. Ercanli, and O. Ozturk.Reducing 
Off-Chip Memory Access Costs Using Data Recomputation 
in Embedded Chip Multi-processors.In Proceedings of the 

44th ACM/IEEE Design Automation Conference, pp.224-
229, 2007. 

[31] J. Hu et al. Minimizing write activities to non-volatile 
memory via scheduling and recomputation. In proceedings of 
the 8th Symposium on Application Specific Processors 
(SASP),pp.101-106, 2010. 

 
 
Hakduran Koc is an assistant professor in Computer Engineering 
at University of Houston - Clear Lake, Houston, TX.  He received 
his B.Sc. degree in Electronics Engineering from Ankara 
University, Ankara, Turkey in 1997 and his M.Sc. and Ph.D. 
degrees from Syracuse University, Syracuse, NY in 2001 and 
2008, respectively. His research interests include embedded 
systems, computer architecture, and high level synthesis. 

 

Suleyman Tosun received his B.Sc. in Electrical and Electronics 
Engineering from Selcuk University, Turkey, in 1997 and his M.Sc. 
and Ph.D. degrees in Computer Engineering from Syracuse 
University, NY, in 2001 and 2005, respectively. His research 
interests are embedded system design, reliability, design 
automation, and high-level synthesis of digital circuits. 

 
Ozcan Ozturk received the Bachelor’s degree from Bogazici 
University, Istanbul, Turkey, in 2000, the M.Sc. degree from the 
University of Florida, Gainesville, in 2002, and the Ph.D. degree 
from Pennsylvania State University, University Park, in 2007. His 
research interests are in the areas of multicore and manycore 
architectures, power-aware architectures, and compiler 
optimizations. 

 
MahmutKandemiris received the B.Sc. and M.Sc. degrees in 
control and computer engineering from Istanbul Technical 
University, Istanbul, Turkey, in 1988 and 1992, respectively. He 



International Journal of Computer Science and Network (IJCSN) 
Volume 1, Issue 5, October 2012    www.ijcsn.org    ISSN 2277-5420 

 

 

received the PhD degree from Syracuse University, Syracuse, 
New York, in electrical engineering and computer science in 1999. 

His main research interests are optimizing compilers, I/O-intensive 
applications, and power-aware computing. 

 


