
International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012www.ijcsn.org ISSN 2277-5420

ImImImImproving Memory Space Utilizationproving Memory Space Utilizationproving Memory Space Utilizationproving Memory Space Utilization in Multiin Multiin Multiin Multi----core core core core
Embedded Embedded Embedded Embedded SystemsSystemsSystemsSystems using Task Recomputationusing Task Recomputationusing Task Recomputationusing Task Recomputation

1Hakduran Koc,2Suleyman Tosun,3Ozcan Ozturk,4Mahmut Kandemir

1University of Houston – Clear Lake, Houston, TX 77058, USA

2 Ankara University, Ankara, 06500,Turkey

3Bilkent University, Ankara, 06800, Turkey

4Pennsylvania State University, University Park, PA, 16802, USA

Abstract
As embedded applications are processing increasingly larger data
sets,keeping their memory space consumptions under control is
becoming a verypressing issue. Observing this, several prior
efforts have considered memoryspace reduction techniques (in
both hardware and software) based on data compression and
lifetime-based memory recycling. In this work,we propose and
evaluate an alternate approach to memory space saving in multi-
core embedded architectures such as chip multiprocessors. The

uniquecharacteristic of our approach is that it recomputes the
results of selecttasks in a given task graph (which represents the
application), instead of storing these results in memory
andaccessing them from there as needed. Our approach can work
under a givenperformance degradation bound and reduces
memory space requirements underthis bound. Our experimental
resultsare very encouraging and show that the proposed
approachreduces memory space requirements of our task graphs

by as much as 19.5%,the average savings being around 11.3%.

Keywords:Memory Space Reduction, Task Recomputation,

Multi-core Architecture, Embedded Systems.

1. Introduction

Memory space consumption is an important metric to

optimize for many embedded designs with tight memory

constraints. While this is certainly true for both code and

data memory, the rate at which the data sizes of embedded

applications increase far exceeds the rate at which their

code sizes increase. As a result, optimizing for data

memory size is becoming increasingly more important

than optimizing for code memory size. Several research

papers aimed at reducing the data space requirements of

embedded designs and proposed different techniques that
can be adopted by optimizing compilers and design

synthesis tools. These techniques range from compressing

data [2, 28] to lifetime based memory reuse analysis [1, 16,

24] to code restructuring for memory reuse [13, 14, 15, 25].

This paper proposes a novel approach for reducing

memory space consumption based on task recomputation.
The basic idea is to reduce memory space demand by

recomputing select tasks (in a task graph representation of

the program) whenever their results are needed, instead of

storing those results in memory (after their first

computation) and accessing them from memory. While

this approach can reduce memory demand, performing

frequent recomputations can also lead to an increase in

overall execution latency. In other words, there is a clear

tradeoff between performance and memory space

consumption. Consequently, this approach should be

applied with care to select tasks only. Working on a task

graph representation of a given embedded application, we
propose a fully-automated scheme that identifies the tasks

to recompute in such a way that the potential negative

impact on execution time is minimized.

Focusing on an embedded multi-core architecture, the

proposed approach first identifies thecritical paths in the

task graph under consideration. It then marks all the tasks

that sit in the critical paths as non-recomputable, meaning

that these tasks are computed only once andtheir results

are stored in memory for future use as long as they are

needed. The remaining tasks, i.e., those that are not in the
critical path, are marked as recomputable. The restof our

approach traverses the tasks marked as recomputable and

selects a subset of them (to be recomputed) such that the

overall increase in execution latency is bounded by apreset

value (typically, a designer-specified parameter). A

particularly interestingoptimization problem that can be

instantiated from our general problem description is to

minimize the memory space requirements (by maximizing

task recomputation) without increasing the original

execution latency (i.e., the latency that would be obtained

when no taskrecomputation is used). This can be made

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012www.ijcsn.org ISSN 2277-5420

possible by not allowing any path in the taskgraph to have

a latency which is larger than that of the critical path.

We implemented our approach and tested it using eleven

different task graphs (both automatically generated and

extracted from applications). Our experimental analysis
shows that the proposed approach can be used as a

practical tool for studying the performance/memory space

consumption tradeoffs in embedded designsthat

accommodate a multi-core architecture. Specifically, for

the example task graphs in our experimental suite, we

found that our approach can reduce memory requirements

by about 11.3% on average without any increase in

original execution latency. Also, with a 20% allowable

increase in original execution latency, we were able to

increase our memory savings by up to 24.5%. Our

experimental analysis also shows that this

taskrecomputation based approach is effective with both
unoptimized designs and designs that have already been

optimized (based on data lifetime analysis).

The remainder of this paper is organized as follows. We

revise the previous work on memoryspace optimization in

Section 2. In Section 3, we illustrate, through an example,

how task recomputation can save memory space. A formal

description of our algorithm that recomputes select tasks

every time their results are needed is given in Section 4.

Our experimental results obtained using eleven task graphs

are presented in Section 5. Finally, Section 6 concludes the
paper and points out the future research directions onthis

topic.

2. Related Work

Prior research considered data reuse and data lifetime

analysis as potential solutions to the memory space

optimization problem. Most of these approaches are based

on loop level transformations [13, 14, 15, 25, 26] that
modify the order of execution of loop iterations to use the

memory hierarchy effectively. McKinley et al [19] present

an approach to perform necessary loop transformations

that exploit the inherent spatial and temporal reuse

available in the program. Liu et al [18] present a loop

fusion algorithm based on the loop dependency graph

model. Several approaches have been proposed for

reducing data space requirements of embedded

applications by analyzing the lifetimes of variables [3, 4,

29]. Catthoor et al [3] showed how loop fusion can be used

for minimizing data space requirements. An algorithm to
accurately estimate the minimum memory size for array

intensive applications is proposed in [29]. Based on live

variable analysis, Zhao and Malik [29] transform the

memory size estimation into an equivalent mathematical

problem which can be solved by integer point

counting.Hicks [9] proposed a compiler-directed storage

reclamation scheme using object lifetime analysis which

performs garbage collection by having the compiler insert

deallocation code.

Data space optimizations have also been investigated by
many researchers. Palem et al [22] proposed data

remapping for pointer-intensive dynamic applications to

decrease the memory requirements along with energy

consumption. In their MDO work [12], Kulkarni et al aim

at obtaining a data layout which has the least possible

conflict misses. A combination of both loop and data

transformations has also been explored by different

research groups [10, 21].Kandemir et al [10] describe a

compiler algorithm that considers loop and data layout

transformations in a unified framework for optimizing

cache locality on uniprocessor and multiprocessor

machines. On the other hand, O'Boyle and Knijnenburg
[21] propose an extended algebraic transformation

framework to eliminate the temporary copies.

Compression techniques have also been used to reduce the

memory footprint of both program code and application

data.Cooper and McIntosh [5] uses pattern-matching to

coalesce the instruction sequences to reduce the size of the

compiled code.In VLIW architectures, Ros and Sutton [23]

applied code compression algorithms to instruction words.

Methods that use profile information have been proposed

as well [7]. Code compression has also beenapplied to
VLIW architectures that use Variable-to-fixed (V2F)

coding [27]. An extension to this approach, called the

variable-sized-block method, is presented by Lin et al [17].

Prior data compression related efforts include both

hardware and software approaches. Benini et al [2]

propose a hardware-assisted data compression that uses

on-the-fly data compression and decompression. A first

level cache compression technique is proposed in Yang et

al [28] to reduce the number of cache miss as well as miss

penalty.

Data recomputation is utilized in [11] for saving memory
space. As compared to this prior effort, our work focuses

on a multi-core architecture and proposes a fast heuristic

solution. In comparison, the work in [11] considers a

single CPU based system and uses integer linear

programming (ILP). Also, recomputation is used in [30] to

improve performance of chip multi-processors and in [31]

to minimizing write activities to non-volatile memories.

3. Task Recomputation

In our approach, we use the task graph representation of a

given embedded application. A task graph is a directed

acyclic graph where nodes are tasks and edges represent

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

the dependencies among these tasks. An edge from task ti

to task tj indicates that the data computed by ti is used by tj.

Since the execution latency of such a task graph is

determined by the critical path(s), depending on the

properties of the task graph, it might be possible to

perform recomputations without incurring performance
overhead. Let us consider the example task graph given in

Figure 1 with 9 tasks running on an embedded multi-CPU

(chip multiprocessor) architecture with two homogeneous

processor cores. The execution latency of each task is also

shown on theright hand side of the same figure. Based on

these latencies, the critical path in this example is 1-3-5-6-

7-8, which has a total execution latency of 73.

Fig. 1: An example task graph with 9 tasks. The source and the sink

nodes are not shown.

The corresponding schedule for this task graph (without

any recomputations) is shown in Figure 2(a).As can be

seen, CPU2 is idle more than half of the execution, which

indicates a possible recomputation opportunity without

increasing the original execution latency. Assuming that

each task consumes 10 units of memory space to store its

results and we do not employ any lifetime based memory

space recycling (i.e., no automatic garbage collection), the

total memory space required for storing the data

manipulated will be 90 (10 × 9) units. By exploiting

lifetime analysis, on the other hand, one can come up with
a better memory behavior. This can be achieved by using a

conflict graph [20] and applying graph coloring algorithm

[20, 6] to this conflict graph to identify the tasks whose

lifetimes do not overlap.Note that this problem is slightly

different from the conventional register allocation problem

since each task can have different memory requirements.

Then, the number of colors returned gives the minimum

number of tasks that need to store their results. For the

above example, four memory spaces will be needed if such

a lifetime analysis is employed, reducing the total memory

space requirement from 90 to 40. However, further

reductions in the memory space requirements can be
achieved using recomputations by exploiting the idle

periods that appear in the schedule of CPU2. Consider, for

instance, the idle period (t=24-42) between tasks t4 and t9

scheduled on this CPU. Since t4 is the only task that

requires the output of task t1 after t=10, the t1's output will

not be needed if we recompute task t1 right before

computing t4. This way we can further reduce the memory

space requirement from 40 to 30.The resulting schedule is

shown in Figure 2(b). As can be seen, the total execution
latency is not affected by this recomputation. That is, it is

possible to reduce memory space requirements of the task

graph by carefully recomputing the select tasks without

incurring any performance penalty.

(a)

(b)

(c)

Fig. 2: An example scheduling scenario for a two CPU system. The x-

axis corresponds to the execution time. (a) Schedule without any

recomputations. (b) Schedule when recomputation is employed without

any increase in the original execution latency. (c) Schedule when

recomputation is employed with a maximum of 5% allowable increase in

the original execution latency.

Although there might be different recomputation

possibilities in a given schedule, not all of them can reduce

the memory space requirements and not all of them come

without performance overheads. On the other hand, in
some cases, one can tolerate an increase in execution

latency up to a certain level which can be captured by a

preset value, a designer-specified parameter. Figure2(c)

illustrates how we can achieve further savings in memory

space requirements of our example task graph when a

maximum of 5% increase in execution latency is allowed.

In this case, it is sufficient to keep the outputs of only two

tasks in memory at the same time, reducing the memory

space requirement from 30 units to 20 units. The

performance overhead incurred due to recomputing task t2

before task t8 is 3, i.e., the total execution latency is
increased from 73 to 76, as depicted in Figure 2(c).

It is important to note that a task ti does not need to be

recomputed every time its output is needed by some other

task tj. Instead, it is possible to recompute task ti initially a

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012www.ijcsn.org ISSN 2277-5420

couple of times, and then storing its result in memory

when recomputation is no longer beneficial. Let us

consider the example task graph given in Figure 3(a).

Tasks t3, t4, and t5 in this graph all depend on the output of

task t1. Based on the corresponding schedule shown in

Figure 3(b), task t3 immediately uses the output generated
by t1. However, tasks t3 and t5 will receive the output of t1

(a)

(b)

Fig. 3: An example task graph and task execution latencies (a) and the

corresponding schedule with recomputations (b).

either through recomputation (of task t1) or from the

memory. For task t4, recomputation without any increase

in the total execution latency is possible. On the other hand,

this is not the case for task t5. As this example illustrates,

some of the tasks can use recomputation to obtain their

inputs, whereas some others can obtain the same inputs

through the memory at different points in the execution of

the task graph.Overall, this discussion shows that

recomputation can be an effective means of reducing

memory space requirements of applications executing on

multi-CPU embedded systems. The next section presents
and discusses our recomputation algorithm.

4. Details of Our Approach

While the previous section explains our approach at a high

level, in this section, we discuss the details of the proposed

approach. Algorithm 1 gives a sketch of our approach.

This program takes five inputs, namely, the task graph in

question (TG(V,E)) , the number of processors (P), the
original execution latency (L) without any recomputation,

the number of recomputation levels (R-Level), and the

performance overhead allowed (OA), and it returns, as

output, the new schedule with recomputation. It is

important to note that we start by a schedule which has

been obtained from a performance-oriented task

scheduling algorithm. The reason for this design choice is

to minimize the impact of our approach on performance.

In other words, we would like to keep our modifications to

the schedule with the best performance at minimum.

TG(V,E) denotes a task graph scheduled with respect to

performance constraints, where V={v1,v2, …, vn} is the

vertex set representing the tasks and E={e1, e2, …, ek} is
the edge set representing the dependencies among these

tasks. Notice that the tasks in V are ordered starting from

the closest task to the sink. Based on this order, the slack

value for each task is calculated. Note that the slack for a

task indicates the amount of extra latency it can tolerate

without affecting the overall execution latency of the task

graph being analyzed.R-Level indicates the maximum

number of subsequent recomputations allowed to execute a

task. Also, the value of global benefit (denoted G-Benefit

in the algorithms) obtained by exploiting recomputations

is initialized to 0.

Algorithm 1Memory Optimization
1. Input: TG(V,E), P, L, R-Level, and OA
2. Output: Schedule with recomputation
3. G-Benefit = 0

4. for alli∈ |V|do

5. Order task vi

6. end for

7. for alli∈ |V|do

8. Calculate slack for vi

9. end for

10. for alli∈ |V|do

11. Determine all the paths to the source originating from vi
12. Construct Recompute Set for each path if possible
13. Search Best (vi, R-Level, OA, 0)

14. end for

For each node of the given task graph, the Memory

Optimization algorithm looks for the potential

recomputation patterns.This is achieved by a call to a

function named Search Best, which recursively tries to

perform recomputations based on the slacks in the task

graph and the specified performance overhead. Algorithm2

gives the sketch of this function.This function takes the

task (V), the number of recomputation levels (Level), the

performance overhead allowed (OA), and the memory

benefit brought by the current recomputation path so far

(MB). When Search Best is invoked from the Memory

Optimization function, it is passed the maximum number

of recomputations allowed and the maximum overhead
possible. The initial memory benefit is passed as 0. Then,

Search Best traverses all the predecessors of the given

node (V). First, it computes tdiff, which is the difference

between the end of the lifetimes of the current node (V)

and its predecessor (vi). This indicates whether

recomputing vi is beneficial or not. If another task (other

than V) is using the same output, (i.e., the results of vi will

be kept in the memory in any case), the lifetime of vi may

go beyond that of V, which suggests that recomputing vi is

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

not beneficial in terms of saving additional memory space.

As can be seen, if tdiff is less than 0, the recursion does not

go any further. The second constraint checked by this

function is whether the slack of the current task is long

enough to accommodate a recomputation. This is checked

by Vslack≥vi.exec. If it is possible to recompute vi within the
slack time of V, the memory space saving (MB-new)

Algorithm 2Search Best
1. Input: V, Level, OA, MB

2. Output: Optimum Recomputation

3. for alli∈ |Pred{V}|do

4. tdiff ← V.end - vi.end

5. iftdiff> 0 then
6. if (Vslack ≥ vi.exec) or (OA permits vi.exec - Vslack) then
7. MB-new ← MB + vi.exec × vi.memory
8. OA-new ← update OA
9. if MB-new > G-Benefit then
10. G-Benefit ← MB-new
11. Add v to the recomputation list

12. Update scheduling accordingly

13. end if

14. end if

15. end if
16. if (tdiff> 0) and (Level > 0) then
17. if (Vslack ≥ vi.exec) or (OA permits vi.exec - Vslack) then
18. Search Best(vi, Level-1, OA-new, MB-new)

19. end if

20. end if

21. end for

brought by this recomputation (in addition to the possible

previous recomputation(s)) is calculated. This value is

obtained based on the parameter passed to the function
(MB), that is, the memory savings brought by the previous

recomputations. If this is the first recomputation in the

path, this value is 0. Although there might be different

criteria to select the recomputations to perform (from

among the set of all possible recomputations), we use time

× memory as the metric for memory space savings, where

time is the reduction in lifetime of the task's output and

memory is the corresponding task's memory consumption.

While we prefer not to increase the overall execution

latency, in some execution environments it might be

possible to tolerate up to a certain performance overhead,

which is given as OA in this algorithm. If it is possible to
recompute the task under consideration within the

tolerated performance overhead bound, it is recomputed

and the overhead allowed (OA) is updated accordingly.

This value is then passed to the next Search Best function

call. In order to decide whether we can continue

performing recomputations in the current path, we check

whether the maximum number of

subsequentrecomputations allowed has been reached or

not (in addition to the conditions discussed above).

It is important to emphasize that, using this algorithm, all

of the legal paths from a lower level node to a higher level

node in the task graph are evaluated for possible

recomputations. If performing one or more recomputations

on a path reduces the memory consumption, this reduction

is stored in G-Benefit and the corresponding path is
recorded as well. Among these paths, the one that brings

the maximum memory space savings is chosen.

Let us now discuss how this algorithm operates on the task

graph shown in Figure 1. Given the performance-

scheduled graph, our algorithm calculates the time slack

for each task. For example, since CPU2 is idle for t=24-42

and there is no task succeeding node 4 in the task graph,

the slack for task v4 is 18. Then, checking every

predecessor of each node, a Recompute Set is constructed

for each path to source. In this example, since v4 has a path

to source through v1 and has enough slack available, (4, 1)
is the recompute set for v4. On the other hand, v5 has no

element in its recompute set. If it had time slack available,

it could have (5, 2), (5, 3), (5, 2, 1) and (5, 3,1) in its

recompute set. Next, the algorithm calls the recursive

function Search Best to determine if the recomputation

brings any memory saving. The function also determines

the most efficient recompute set among all sets if there is

more than one. In our example, it takes into account the

recomputation for the set (4,1) and updates the schedule

and required parameters for memory.

5. Experimental Evaluation

Our goal in this section is to present an experimental

evaluation of the proposed recomputation based approach.

For this purpose, we used both automatically-generated

task graphs and task graphs extracted from benchmarks.

For the first part, we used the TGFF tool [8] and generated

several task graphs. Unless otherwise stated, we assumed

10 processors in our experiments.Also, in our experiments,
each task has a latency value between 7-20 units, and uses

a memory size of 4-15 units.We made experiments with

two groups of automatically-generated task graphs. Our

first group of task graphs (tg1 through tg4) have the same

edges/node ratio, but each with different number of nodes

and edges. Thesecond group of task graphs (tg5 through

tg7) on the other hand is comprised of graphs with

different edges/noderatios. The reason that we make

experiments with these two different sets oftask graphs is

to evaluate the behavior of our approach under the

differentscenarios. The important characteristics of our
task graphs are given inTable1. The first column of this

table gives the name of the task graph and the next two

columns give the number of nodes and edges in the graph.

The fourth column of the table shows the total sizeof the

data manipulated by the nodes of the task graph when no

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012www.ijcsn.org ISSN 2277-5420

memory spacesaving technique is employed. The next

column of Table 1 onthe other hand gives the amount of

data space requirements when a lifetime based memory

space recycling is used. In this scheme, the memory

spaceallocated for storing the results of a task is recycled

when the data storedare no longer needed. When

comparing these two columns of this table, wesee that a

lifetime analysis based memory space recycling cuts the

memoryspace requirements by 49.5% on the average. Our

goal is
Table 1: Task Graphs and their important characteristics.

Task Graph

Label

Number of

Nodes

Number of

Edges

Data Size

(No Opt.)

Data Size

(Lifetime Ana.)

Latency

tg1 11 16 86 47 51

tg2 14 19 136 59 37

tg3 20 30 184 94 73

tg4 31 45 306 139 71

tg5 20 40 192 99 75

tg6 21 50 180 92 83

tg7 20 60 195 110 131

to further increasememory space savings through task

recomputation. Finally, the last column of the Table 1

shows the execution latency of each task graph when

norecomputation is used. In the rest of thissection, all

memory saving results are given as normalized values

withrespect to the corresponding values in the fifth column

ofTable 1 (i.e., over the lifetime based approach).

Similarly, the performance overheads (if any) incurred by
our approach are given as normalized values with respect

to the corresponding valueslisted in last column of this

table.

The bar-chart in Figure 4 shows the normalized memory

spacesavings obtained by our recomputation-based

approach for our task graphs. Inthese experiments, we use

the version of our approach (whose pseudo-code isgiven in

Algorithm1) that does not increase the originalexecution

latency. We seethat our approach reduces the memory

space requirements by 13.6% for thefirst groupof task
graphs and 6.5% for the second group of task graphs.These

results clearly show the effectiveness of our approach in

reducingmemory space requirements and the important

point we want to emphasize here is that these savings

come at no performance cost.

In our next set of experiments, we study the tradeoff

between memory spacesaving and performance overhead

by allowing our approach to tolerate certain(specified)

increase in original execution latency. That is, we test

ourapproach whose pseudo-code is given inAlgorithm 2.

We see from the results given inFigure 5 (which are given
for two of our task graphs) that, by tolerating 20% increase

in original execution latency, we can save 24.5%memory

space. This gives the designer to perform a tradeoff

analysis betweenmemory space savings and performance

overheads.

(a)

(b)

Fig. 4: Normalized memory requirements of our approach for the task

graphs in Table 1.

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

Fig. 5: Normalized memory requirements with varying performance

overheads.

Fig. 6: Normalized memory requirements for the task graphs extracted

from benchmarks.

Fig. 7: Normalized memory requirements with different number of CPUs.

In addition to these task graphs generated by the TGFF

tool, we alsoperformed experiments with the task graphs

extracted from several embedded applications. The

normalized memory requirements for this set of task

graphs are given in Figure 6 for the case when no increase

in the original execution latencies is tolerated. We see that

our recomputation based approach is very effective in

reducing memory space requirements of these task graphs

as well, achieving an average memory saving of 13.9%.

We next evaluate the behavior of our approach when the

number of CPUs is varied. Recall that the default number

of CPUs used so far in our experiments was 10. As before,

we focus only on task graphs tg2 and tg3. Allowing no

increase in original executionlatency, Figure 7 gives the

memory space savings (over the versions that uselifetime

based analysis) under different number of CPUs. We

observe from these results that, as the number of CPUs

increases, the normalized memory requirement of the
application decreases. However, after reaching a CPU

count that handles all the concurrent paths in the task

graph, increasing the number of CPUs further will not

affect the memory requirement, as seen in the figure for

tg3.

6. Conclusion and Future Work

The main contribution of this paper is a novel memory
space saving schemefor embedded multi-CPU systems.

Starting with a task graph scheduled for thebest

performance, the proposed approach identifies a set of

tasks andrecomputes their results every time they are

needed (instead of computingthem once, storing their

results in memory and accessing those results from

memory whenever needed). Weperformed experiments

with several task graphs (that represent different execution

scenarios) and the results obtained sofar show the

effectiveness of this recomputation based approach.

Specifically, our experimental analysis shows that we can
save significant memory space (over a lifetime based

approach) without incurring any performance penalty. Our

approach also works under the cases where a certain

performance penalty can be tolerated. Our futurework

involves extending this idea to a dynamic compilation

environment wherethe recomputation decisions are taken

at runtime by a dynamic compiler.

References
[1] D. A. Barrett and B. G. Zorn. Using lifetime predictors to

improve memoryallocation performance. In Proceedings of

the ACM Conference onProgramming Language Design and
Implementation, pages 187–196, 1993.

[2] L. Benini, D. Bruni, A. Macii, and E. Macii. Hardware-
assisted datacompression for energy minimization in systems
with embedded processors. InProceedings of the Conference
on Design, Automation and Test in Europe, page449, 2002.

[3] F. Catthoor, K. Danckaert, C. Kulkarni, E. Brockmeyer, P.
Kjeldsberg, T. V.Achteren, and T. Omnes. Data Access and
Storage Management for Embedded Programmable

Processors.Kluwer Academic Publishers, Boston, MA,
USA,2002.

[4] F. Catthoor, E. de Greef, and S. Suytack. Custom Memory
ManagementMethodology: Exploration of Memory
Organization for Embedded MultimediaSystem Design.
Kluwer Academic Publishers, Norwell, MA, USA, 1998.

[5] K. D. Cooper and N. McIntosh. Enhanced code compression
for embedded RISC processors. In Proceedings of the ACM

Conference on Programming LanguageDesign and
Implementation, pages 139–149, 1999.

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012www.ijcsn.org ISSN 2277-5420

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms.The MIT Press/McGraw-Hill, Cambridge, MA,
USA, 2001.

[7] S. Debray and W. Evans. Profile-guided code compression. In
Proceedings ofthe ACM Conference on Programming

Language Design and Implementation,pages 95–105, 2002.
[8] R. P. Dick, D. L. Rhodes, and W.Wolf. TGFF: Task Graphs

For Free. InProceedings of the International Workshop on
Hardware/Software Codesign,pages 97–101, 1998.

[9] J. Hicks. Experiences with compiler-directed storage
reclamation. InProceedings of the Conference on Functional
Programming Languages andComputer Architecture, pages
95–105, 1993.

[10] M. Kandemir, J. Ramanujam, and A. Choudhary.Improving
cache locality by a combination of loop and data
transformations. IEEE Transactions onComputers,
48(2):159–167, 1999.

[11] M. T. Kandemir, F. Li, G. Chen, G. Chen, and O.
Ozturk.Studyingstorage-recomputation tradeoffs in memory-
constrained embedded processing.In Design, Automation and
Test in Europe Conference, pages 1026–1031, 2005.

[12] C. Kulkarni, F. Catthoor, and H. D. Man. Advanced data
layout optimization formultimedia applications. In
Proceedings of the IPDPS Workshops on Paralleland
Distributed Processing, pages 186–193, London, UK,
2000.Springer-Verlag.

[13] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache
performance andoptimizations of blocked algorithms. In
Proceedings of the InternationalConference on Architectural

Support for Programming Languages andOperating Systems,
pages 63–74, 1991.

[14] W. Li. Compiling for Numa Parallel Machines. PhD thesis,
Ithaca, NY, USA,1993.

[15] W. Li and K. Pingali. A singular loop transformation
framework based onnon-singular matrices. International
Journal Parallel Program, 22(2):183–205,1994.

[16] H. Lieberman and C. Hewitt. A real-time garbage collector
based on thelifetimes of objects. Commun. ACM, 26(6):419–

429, 1983.
[17] C. H. Lin, Y. Xie, and W.Wolf. LZW-based code

compression for VLIW embedded systems. In Proceedings of
the Conference on Design, Automationand Test in Europe,
page 30076, 2004.

[18] M. Liu, Q. Zhuge, Z. Shao, and E. H.-M.Sha.General loop
fusion techniquefor nested loops considering timing and code
size. In Proceedings of theInternational Conference on

Compilers, Architecture, and Synthesis forEmbedded
Systems, pages 190–201, 2004.

[19] K. S. McKinley, S. Carr, and C.-W.Tseng.Improving data
locality with looptransformations. ACM Transactions on
Programming Languages and Systems,18(4):424–453, 1996.

[20] G. D. Micheli. Synthesis and Optimization of Digital
Circuits.McGraw-HillHigher Education, 1994.

[21] M. F. P. O’Boyle and P. M. W. Knijnenburg.Integrating

loop and datatransformations for global optimization. Journal
of Parallel and DistributedComputing, 62(4):563–590, 2002.

[22] K. V. Palem, R. M. Rabbah, I. Vincent J. Mooney, P.
Korkmaz, andK. Puttaswamy. Design space optimization of
embedded memory systems viadata remapping. In
Proceedings of the Joint Conference on Languages,Compilers
and Tools for Embedded Systems, pages 28–37, 2002.

[23] M. Ros and P. Sutton. Code compression based on operand-
factorization forvliw processors. In Proceedings of the
Conference on Data Compression, page559, 2004.

[24] C. Ruggieri and T. P. Murtagh.Lifetime analysis of
dynamically allocatedobjects. In Proceedings of the ACM

SIGPLAN-SIGACT Symposium onPrinciples of
Programming Languages, pages 285–293, 1988.

[25] L. Wang, W. Tembe, and S. Pande.Optimizing on-chip
memory usage throughloop restructuring for embedded
processors. In Proceedings of the InternationalConference on
Compiler Construction, pages 141–156, 2000.

[26] M. J. Wolfe. High Performance Compilers for Parallel
Computing.Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 1995.
[27] Y. Xie, W.Wolf, and H. Lekatsas.Code compression for

VLIW processors usingvariable-to-fixed coding. In
Proceedings of the 15th International Symposiumon System
Synthesis, pages 138–143, 2002.

[28] J. Yang, Y. Zhang, and R. Gupta. Frequent value
compression in data caches. InProceedings of the 33rd
Annual ACM/IEEE International Symposium

onMicroarchitecture, pages 258–265, 2000.
[29] Y. Zhao and S. Malik. Exact memory size estimation for

array computationswithout loop unrolling. In Proceedings of
the 36th ACM/IEEE Conference onDesign Automation,
pages 811–816, 1999.

[30] H. Koc, M.Kandemir, E. Ercanli, and O. Ozturk.Reducing
Off-Chip Memory Access Costs Using Data Recomputation
in Embedded Chip Multi-processors.In Proceedings of the

44th ACM/IEEE Design Automation Conference, pp.224-
229, 2007.

[31] J. Hu et al. Minimizing write activities to non-volatile
memory via scheduling and recomputation. In proceedings of
the 8th Symposium on Application Specific Processors
(SASP),pp.101-106, 2010.

Hakduran Koc is an assistant professor in Computer Engineering
at University of Houston - Clear Lake, Houston, TX. He received
his B.Sc. degree in Electronics Engineering from Ankara
University, Ankara, Turkey in 1997 and his M.Sc. and Ph.D.
degrees from Syracuse University, Syracuse, NY in 2001 and
2008, respectively. His research interests include embedded
systems, computer architecture, and high level synthesis.

Suleyman Tosun received his B.Sc. in Electrical and Electronics
Engineering from Selcuk University, Turkey, in 1997 and his M.Sc.
and Ph.D. degrees in Computer Engineering from Syracuse
University, NY, in 2001 and 2005, respectively. His research
interests are embedded system design, reliability, design
automation, and high-level synthesis of digital circuits.

Ozcan Ozturk received the Bachelor’s degree from Bogazici
University, Istanbul, Turkey, in 2000, the M.Sc. degree from the
University of Florida, Gainesville, in 2002, and the Ph.D. degree
from Pennsylvania State University, University Park, in 2007. His
research interests are in the areas of multicore and manycore
architectures, power-aware architectures, and compiler
optimizations.

MahmutKandemiris received the B.Sc. and M.Sc. degrees in
control and computer engineering from Istanbul Technical
University, Istanbul, Turkey, in 1988 and 1992, respectively. He

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

received the PhD degree from Syracuse University, Syracuse,
New York, in electrical engineering and computer science in 1999.

His main research interests are optimizing compilers, I/O-intensive
applications, and power-aware computing.

