
International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

Evaluation ofEvaluation ofEvaluation ofEvaluation of Discrete EventDiscrete EventDiscrete EventDiscrete Event
Wireless Sensor Network SimulatorsWireless Sensor Network SimulatorsWireless Sensor Network SimulatorsWireless Sensor Network Simulators

1AnilKumar Patil , 2Dr P. M .Hadalgi

1Research scholar, Dept of Applied Electronics, Gulbarga University

Karnataka,India

2Dept of Applied Electronics Gulbarga University,

Karnataka,India

Abstract

Simulation tools for wireless sensor networks are increasingly
being used to study sensor webs and to test new applications and

protocols in this evolving research field.There is always an
overriding concern when using simulation that the results may
not reflect accurate behavior. It is therefore essential to know the
strengths and weaknesses of these simulators. This paper
provides a comprehensive survey and comparisons of various
popular sensor network simulators with a view to help
researchers choose the best simulator available for a particular
application environment. It also provides a detailed comparison

describing the pros and cons of each simulator.

Keywords: Wireless Sensor Network, Simulator, NS-2,
TOSSIM, OMNeT++, J-Sim, ATEMU, Avrora,OPNET,

CASTALIA

1. Introduction

1.1 What is WSN

Sensor networks are composed of large numbers of tiny

sensing and computing devices. Each of these devices,

called motes, has very limited communication,

computational and energy resources. Often embedded in

uncontrolled physical environments, these networks

require distributed algorithms for efficient data processing,

while individual motes require highly concurrent and

reactive behavior for efficient operation. Sensor networks

face many problems that do not arise in other types of

networks[1].Power constraints, limited hardware,

decreased reliability, and a typically higher density and

number of nodes than those found in conventional
networks are few of the problems that have to be

considered when developing protocols for use in sensor

networks. Fig.1 shows a typical simple wireless sensor

network. As can be seen, a complete wireless sensor

network usually consists of one or more base stations (or

gateway), a number of sensor nodes, and the end user. The

topology of WSNs can vary among star network, tree

network, and mesh network. Each node has the ability to

communicate with every other node wirelessly, thus a

typical sensor node has several components: a radio

transceiver with an antenna which has the ability to send or

receive packets, a microcontroller which could process the

data and schedule relative tasks, sensors sensing the

environment data, and batteries providing energy supply.

Sensor nodes measure physical quantities such as

temperature, position, humidity, pressure etc. The output

of those sensor nodes are wirelessly transmitted to the base

station (or gateway) for data collection, analysis, and

logging. End users may also be able to receive and manage
the data from the sensor via a website from long-distance

or applications in console terminal[2] . However due to the

associated cost, time and complexity involved in

implementation of such networks, developers prefer to

have first-hand information on feasibility and reflectivity

crucial to the implementation of the system prior to the

hardware implementation.

Fig. 1 A simple wireless sensor network

This is especially true in sensor networks, where hardware

may have to be purchased in large quantities and at high

cost. Even with readily available sensor nodes, testing the

network in the desired environment can be a time

consuming and difficult task. Simulation-based testing can

help to indicate whether or not the time and monetary
investments are worthwhile. Simulation is, therefore, the

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

most common approach to developing and testing new

protocol for sensor networks. There are a number of

advantages to this approach including lower cost, ease of

implementation, and practicality of testing large-scale

networks.

In order to effectively develop any protocol based on
simulations, it is important to know the different tools

available and their benefits and drawbacks. Given the facts

that simulation is not perfect and that there are a number of

popular sensor network simulators available, thus making

different simulators accurate and most effective for

different situations/applications. It is crucial for a

developer to choose a simulator that best fits the

application[3] . However, without a working knowledge of

the available simulators, this is can be a challenging task.

Additionally, knowing the weaknesses of available

simulators could help developers to identify drawbacks of

their own models, when compared with these simulators,
thus providing an opportunity for improvement. It is thus

imperative to have a detailed description of a number of

the more prominent simulators available. In this paper, we

have compared various sensor network simulators with

emphasis on their ease of use, key features, limitations,

availability, and environments best supported[4].

1.2 Comparison of wired and wireless network

The wired network has been around for decades, as long as

the internet itself. Compared with wireless networks, wired
networks are more secure and faster in transfer speeds.

However, wired networks contain one of the biggest

growing problems, wires. Complicated wires and power

cords are difficult to manage and hugely degrade the

flexibility. Wiring and rewiring are the bottleneck of

development of wired network. With the rapid

development of wireless technology, more and more

people prefer to use wireless network as their end-user

network.

Compared with the traditional wireless network, WSN has

its own features, such as low cost and low energy
consumption. To reduce cost, each sensor board has very

limited onboard resource, such as computing speed,

storage and energy source. To achieve long lifetime with

limited power supply usually batteries, onboard

components are designed to consume energy as little as

possible. For instance, the transmit power of radio is 1000

times smaller than the one in Wi-Fi routers. WSN is

always deployed in difficult-access areas; the ability of

self-configuration is another design goal.

1.3. Design of Sensor Network Simulator

The design of a Wireless Sensor Network (WSN) is a very

application-specific task, especially because of the

peculiarity of the considered deployment environment.

Generic reliable predictive models for data correlation or

radio propagation are seldom available. A thorough

preliminary test phase is thus necessary, either by means of

specifically crafted test beds, or via reliable simulations.

WSN applications must be tested on a large scale, and

under complex and varying conditions in order to capture a
sufficiently wide range of interactions, both among nodes,

and with the environment. A WSN simulator consists of

various modules namely events, medium, environment,

node, transceiver, protocols, and applications. Each

category is represented by an interface that defines its

methods and events generated and consumed.

1. Event

Event is an abstract base class that provides basic

functionality for all events. It contains the time at which an

event should work, and provides methods to: compare

events based on their fire times, determine whether events
are equal, print themselves to a string, and an abstract

method to fire the event.

2. Medium

Medium models the wireless medium. It allows nodes to

broadcast signals, and is responsible for

informing nodes of signals that affect it. In order to do this,

Medium must be informed of the presence of every node,

and any changes in position or radio properties such as

transmitter power or receiver sensitivity. Medium has the

properties of bandwidth and wavelength of the medium
modeled and a reference to a propagation model that is

given to it at the time of construction. The propagation

model provides the strength at a particular receiver from a

signal transmitted by a given transmitter.

3. Environment

The Environment module is similar to Medium module.

The difference is that the implementation of Environment

has properties that relate to the physical phenomenon

modeled. Environment also has a propagation model that

models the propagation of the physical phenomena

modeled. Physical phenomena of interest in sensor
networks include: temperature, light, humidity, magnetic

field, sound, optical, chemical presence.

4. Node

It represents a single node in a wireless sensor network. As

such, it serves as a container for all of the components,

both hardware and software, in a node. These components

should be included: processor, transceiver, sensors,

actuators, energy source (such as a battery), network

protocols, and applications. In addition each node has the

properties of location and identification.

5. Transceiver

Transceiver models the hardware transceiver on each

sensor node. It models the transceiver states (i.e.sleep,

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

standby, receive, and transmit), and their associated

behavior and power consumption.Transceiver consumes

events informing it of the beginning and ending of every

signal it receives. It sums active signals to maintain the

interference. Transceiver generates events for the

beginning and ending of every signal it transmits. These
events are all exchanged with an instance of the Medium

module.

6. Physical Protocol

The Physical protocol is the lowest layer in a network

stack. It is often implemented in the transceiver hardware.

The Physical layer provides services for: changing the

state of the transceiver, carrier sensing, sending and

receiving packets, received energy detection on received

packets, changing channels on physical layers that support

multiple channels.

7. MAC Protocol

The MAC protocol is the next layer in a network stack. It

is usually implemented in software running on the node’s

processor. The MAC layer provides services for: changing

the state of the MAC layer (i.e. low power mode), setting

and getting protocol parameters, sending and receiving

packets, etc. A WSN simulator usually offers

implementations for several sensor network MAC

protocols.

8. Routing Protocol
The Routing protocol resides above the MAC protocol and

provides services for routing messages over multiple hops

between nodes that cannot communicate directly.

9. Application Layer

The Application layer resides at the top of the network

stack. It interfaces with the lower layers in the network

stack as well as the sensors and actuators to implement a

wireless sensor network application.

Most of the WSN simulators are based on the design

described above. In addition to including the different

modules, a WSN simulator should also have the following
capabilities:

i. Reusability and availability

Simulation is used to test novel techniques in realistic and

controlled scenarios. Researchers are usually interested in

comparing the performance of a new technique against

existing proposals[5] .

ii. Performance and scalability

Performance and scalability is a major concern when

facing WSN simulation. The former is usually bounded to

the programming language effectiveness. The latter is

constrained to the memory, processor and logs storage size
requirements[6] .

iii. Support for rich-semantics scripting languages to

define experiments and process results

The vast amount of variables involved in the definition of

a WSN experiment requires the use of specific input

scripting languages, with high-level semantics.

Additionally, it is likely that large quantities of output data

will also be generated through many replicas of the

experiments[7] . Therefore, a suitable output scripting
language, which helps to obtain the results from the

experiments quickly and precisely is desirable.

iv. Graphical, debug and trace support.

Graphical support for simulations is interesting in three

aspects:

(a) As a debugging aid. The primary and more practical

way to quickly detect a bad behavior is to “watch” and

follow the execution of a simulation. The key features that

a graphical interface should support are: Capability of

inspection of modules, variables and event queues at real

time, together with “step-by-step” and “run-until”

execution possibilities. These features make graphical
interfaces a very powerful debugging tool. Note that the

key is the ability to interact with the simulation.

(b) As a visual modeling and composition tool. This

feature usually facilitates and speeds the design of small

experiments or the composition of basic modules.

However, for large scale simulations, it is not very

practical.

(c) Finally, it allows quick visualization of results without

a post-processing application[8] .

However, there are various challenges associated with the

available WSN simulators. For instance, some simulator
lack of available protocol models, which causes the

increase of developing time, some simulators limit the

scalability, etc. Additionally, modeling problems arise

when considering the new environment and the energy

components. They also compromise scalability and

accuracy. A deep study of these issues is mandatory for a

better understanding and characterization of sensor

networks and their corresponding simulators

2. Basic Concepts

There are three types of simulation: Monte Carlo

Simulation, Trace-Driven Simulation and Discrete-Event

Simulations[9] . The last two simulations are used

commonly in WSN.

In this paper discrete event simulators are compared.

2.1 Discrete-Event Simulations

Discrete-event simulation is widely used in WSNs,
because it can easily simulate lots of jobs running on

different sensor nodes. Discrete-event simulation includes

some of components. This simulation can list pending

events, which can be simulated by routines. The global

variables, which describe the system state, can represent

the simulation time, which allow the scheduler to predict

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

this time in advance. This simulation includes input

routines, output routines, initial routines, and trace

routines. In addition, this simulation provides dynamic

memory management, which can add new entities and

drop old entities in the model. Debugger breakpoints are

provided in discrete-event simulation, thus users can check
the code step by step without disrupting the program

operation.

2.2 Simulator and Emulator

Simulator[10] is universally used to develop and test

protocols of WSNs, especially in the beginning stage of

these designs. The cost of simulating thousands of nodes

networks is very low, and the simulation can be finished

within very short execution time. Both general and

specialized simulators are available for uses to simulate
WSNs. The tool, which is using firmware as well as

hardware to perform the simulation, is called emulator[10]

. Emulation can combine both software and hardware

implementation. Emulator implements in real nodes, thus it

may provide more precision performance. Usually

emulator has highly scalability, which can emulate

numerous sensor nodes at the same time. In this survey,

seven simulation tools are also categorize into this two

types, and their advantage and disadvantage will be

discussed in section 3.

3. Simulation Tools

This section illustrates simulation tools used in WSNs:

NS-2, TOSSIM, OMNeT++, J-Sim, ATEMU,

Avrora,OPNET and Castalia and analyzes the advantage

and disadvantage of each simulation tool.

3.1 NS-2

The introduction of NS-2 [11-17]and the comparison with

other simulation tools will be discussed in this subsection.

3.1.1 Overview

NS-2 is the abbreviation of Network simulator version

two, which first been developed by 1989 using as the

REAL network simulator. Now, NS-2 is supported by

Defense Advanced Research Projects Agency and National

Science Foundation. NS-2 is a discrete event network

simulator built in Object-Oriented extension of Tool
Command Language and C++[18] People can run NS-2

simulator on Linux Operating Systems or on Cygwin,

which is a Unix-like environment and command-line

interface running on Windows. NS-2 is a popular non-

specific network simulator can be used in both wire and

wireless area. This simulator is open source and provides

online document.

3.1.2 Merits and Limitations

NS-2 contains both merits and limitations when people use

it to simulate WSNs. To the merits, firstly as a non-

specific network simulator, NS-2 can support a
considerable range of protocols in all layers. For example,

the ad-hoc and WSN specific protocols are provided by

NS-2. Secondly, the open source model saves the cost of

simulation, and online documents allow the users easily to

modify and improve the codes.

However, this simulator has some limitations. Firstly,

people who want to use this simulator need to familiar

with writing scripting language and modeling technique;

the Tool Command Language is somewhat difficult to

understand and write. Secondly, sometimes using NS-2 is

more complex and time-consuming than other simulators
to model a desired job. Thirdly, NS-2 provides a poor

graphical support, no Graphical User Interface (GUI) [19];

the users have to directly face to text commands of the

electronic devices. Fourthly, due to the continuing

changing the code base, the result may not be consistent,

or contains bugs.

In addition, since NS-2 is originally targeted to IP

networks , there are some limitations when apply it to

simulate WSNs. Firstly, NS-2 can simulate the layered

protocols not application behaviors. However, the layered

protocols and applications interact and can not be strictly

separated in WSNs. So, in this situation, using NS-2 is
inappropriate, and it can hardly to acquire correct results.

Secondly, because NS-2 is designed as a general network

simulator, it does not consider some unique characteristics

of WSN. For example, NS-2 can not simulate problems of

the bandwidth, power consumption or energy saving in

WSN. Thirdly, NS-2 has a scalability problem in WSN, it

has trouble to simulate more than 100 nodes. As the

increasing of the number of nodes, the tracing files will be

too large to management. Finally, it is difficult to add new

protocols or node components due to the inherently design

of NS-2. In sum, NS-2 as a simulator of WSN contains
both advantages and disadvantages.

3.2 TOSSIM

The introduction of TOSSIM[10,12,13,20-24] and the

comparison with other simulation tools will be discussed

in this subsection.

3.2.1 Overview

TOSSIM is an emulator specifically designed for WSN
running on TinyOS, which is an open source operating

system targeting embedded operating system. In 2003,

TOSSIM was first developed by UC Berkeley’s TinyOS

project team. TOSSIM is a bit-level discrete event network

emulator built in Python[25], a high-level programming

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

language emphasizing code readability, and C++. People

can run TOSSIM on Linux Operating Systems or on

Cygwin on Windows. TOSSIM also provides open sources

and online documents.

3.2.2 Merits and Limitations

TOSSIM contains both merits and limitations when

people use it to emulate WSNs. To the merits, the open

source model free online document save the emulation

cost. Also, TOSSIM has a GUI, TinyViz, which is very

convenience for the user to interact with electronic devices

because it provides images instead of text commands.

In addition, TOSSIM is a very simple but powerful

emulator for WSN. Each node can be evaluated under

perfect transmission conditions, and using this emulator

can capture the hidden terminal problems. As a specific
network emulator, TOSSIM can support thousands of

nodes simulation. This is a very good feature, because it

can more accurately simulate the real world situation.

Besides network, TOSSIM can emulate radio models and

code executions. This emulator may be provided more

precise simulation result at component levels because of

compiling directly to native codes.

However, this emulator still has some limitations. Firstly,

TOSSIM is designed to simulate behaviors and

applications of TinyOS, and it is not designed to simulate

the performance metrics of other new protocols. Therefore,

TOSSIM can not correctly simulate issues of the energy
consumption in WSN; people can use PowerTOSSIM[26] ,

another TinyOS simulator extending the power model to

TOSSIM, to estimate the power consumption of each

node. Secondly, every node has to run on NesC code, a

programming language that is event-driven, component-

based and implemented on TinyOS, thus TOSSIM can

only emulate the type of homogeneous applications.

Thirdly, because TOSSIM is specifically designed for

WSN simulation, motes-like nodes are the only thing that

TOSSIM can simulate. In sum, TOSSIM as an emulator of

WSN contains both advantages and disadvantages.

3.3 OMNeT++

The introduction of OMNeT++[12,27,28] and the

comparison with other simulation tools will be discussed

in this subsection.

3.3.1 Overview

OMNeT++ is a discrete event network simulator built in

C++. OMNeT++ provides both a noncommercial license,

used at academic institutions or non-profit research

organizations, and a commercial license, used at "for-

profit" environments. This simulator supports module

programming model. Users can run OMNeT++ simulator

on Linux Operating Systems, Unix-like system and

Windows. OMNeT++ is a popular non-specific network

simulator, which can be used in both wire and wireless

area. Most of frameworks and simulation models in

OMNeT++ are open sources.

3.3.2 Merits and Limitations

OMNeT++ contains both merits and limitations when

people use it to simulate WSNs. To the merits, firstly,

OMNeT++ provides a powerful GUI. This strong GUI

makes the tracing and debugging much easier than using

other simulators. Although initial OMNeT++ do not

support the module library which is specifically used for

WSNs simulation, with the consciously contribution of the

supporting team, now OMNeT++ has a mobility

framework. This simulator can support MAC protocols as
well as some localized protocols in WSN. People can use

OMNeT++ to simulate channel controls in WSNs. In

addition, OMNeT++ can simulate power consumption

problems in WSNs. However, there are still some

limitations on OMNeT++ simulator. For example, the

number of available protocols is not larger enough. In

addition, the compatible problem will rise since individual

researching groups developed the models separately, this

makes the combination of models difficult and programs

may have high probability report bugs. In sum, both

advantages and disadvantages are included in the

OMNeT++ design.

3.4 J-Sim
The introduction of J-Sim[11,12,24,29] and the

comparison with other simulation tools will be discussed

in this subsection.

3.4.1 Overview

J-Sim is a discrete event network simulator built in Java.

This simulator provides GUI library, which facilities users

to model or compile the Mathematical Modeling

Language, a “text-based language” written to J-Sim

models. J-Sim provides open source models and online

documents. This simulator is commonly used in

physiology and biomedicine areas, but it also can be used

in WSN simulation. In addition, J-Sim can simulate real-

time processes.

3.4.2 Merits and Limitations

J-Sim contains both merits and limitations when people

use it to simulate WSNs. To the merits, firstly, models in

J-Sim have good reusability and interchangeability, which

facilities easily simulation. Secondly, J-Sim contains large

number of protocols; this simulator can also support data

diffusions, routings and localization simulations in WSNs

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

by detail models in the protocols of J-Sim. J-Sim can

simulate radio channels and power consumptions in

WSNs. Thirdly, J-Sim provides a GUI library, which can

help users to trace and debug programs. The independent

platform is easy for users to choose specific components to

solve the individual problem. Fourth, comparing with NS-
2, J-Sim can simulate larger number of sensor nodes,

around 500, and J-Sim can save lots of memory sizes.

However, this simulator has some limitations. The

execution time is much longer than that of NS-2. Because

J-Sim was not originally designed to simulate WSNs, the

inherently design of J-Sim makes users hardly add new

protocols or node components.

3.5 ATEMU

The introduction of ATEMU[12,13,21,24,30] and the

comparison with other simulation tools will be discussed

in this subsection.

3.5.1 Overview

ATEMU is an emulator of an AVR processor for WSN

built in C; AVR is a single chip microcontroller commonly

used in the MICA platform. ATEMU provides GUI,

Xatdb; people can use this GUI to run codes on sensor
nodes, debug codes and monitor program executions.

People can run ATEMU on Solaris and Linux operating

system. ATEMU is a specific emulator for WSNs; it can

support users to run TinyOS on MICA2 hardware.

ATEMU can emulate not only the communication among

the sensors, but also every instruction implemented in each

sensor. This emulator provides open sources and online

documents.

3.5.2 Merits and Limitations

ATEMU contains both merits and limitations when people

use it to simulate wireless sensor network. To the merits,

firstly, ATEMU can simulate multiple sensor nodes at the

same time, and each sensor node can run different

programs. Secondly, ATEMU has a large library of a wide

rage of hard devices. Thirdly, ATEMU can provide a very

high level of detail emulation in WSNs. For example, it

can emulate different sensor nodes in homogeneous

networks or heterogeneous networks. ATEMU can

emulate different application run on MICA. Also users can

emulate power consumptions or radio channels by
ATEMU. Fourthly, the GUI can help users debug

programs, and monitor program executions. The open

source saves the cost of simulation. ATEMU can provide

an accurate model, which helps users to give unbiased

comparisons and get more realistic results. The ATEMU

components architecture is shown in Figure 6. However,

this emulator also has some limitations. For instance,

although ATEMU can give a highly accuracy results, the

simulation time is much longer than other simulation tools.

In addition, ATEMU has fewer functions to simulate

routing and clustering problems. Therefore, both merits

and limitation contains in ATEMU.

3.6 Avrora

The introduction of Avrora[13,24,31] and the comparison

with other simulation tools will be discussed in this

subsection.

3.6.1 Overview

Avrora is a simulator specifically designed for WSNs built

in Java. Similar to ATEMU, Avrora can also simulate

AVR-based microcontroller MICA2 sensor nodes. This

simulator was developed by University of California, Los

Angeles Compilers Group. Avrora provides a wide range

of tools that can be used in simulating WSNs. This

simulator combines the merits of TOSSIM and ATEMU,

and limits their drawbacks. Avrora does not provide GUI.

Avrora also supports energy consumption simulation. This

simulator provides open sources and online documents.

However, this simulator has some drawbacks. It does not

have GUI. In addition, Avrora can not simulate network
management algorithms because it does not provide

network communication tools.

3.6.2 Merits and Limitations

Avrora contains both merits and limitations when people
use it to simulate WSNs. To the merits, firstly, Avrora is

an instruction-level simulator, which removes the gap

between TOSSIM and ATEMU. The codes in Avrora run

instruction by instruction, which provides faster speed and

better scalability. Avrora can support thousands of nodes

simulation, and can save much more execution time with

similar accuracy. Avrora provides larger scalability than

ATEMU does with equivalent accuracy; Avrora provides

more accuracy than TOSSIM does with equivalent scales

of sensor nodes. Unlike TOSSIM and ATEMU, Avrora is

built in Java language, which provides much flexibility.

Avrora can simulate different programming code projects,

but TOSSIM can only support TinyOS simulation.

3.7 OPNET

The introduction of OPNET and the comparison with

other simulation tools will be discussed in this subsection.

3.7.1 Overview
OPNET Modeler is a discrete event, object oriented,

general purpose network simulator. Modeler was

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

introduced in 1987 as the first commercial network

simulator [34]. Originally, the software was developed for

military purposes, but it has grown to be the world’s

leading commercial network simulation and modeling tool.

OPNET is a large and powerful software with a wide

variety of possibilities. OPNET can be used as a research
tool and also as a network design/analysis tool. OPNET

was originally built for the simulation of fixed networks,

and therefore, it contains extensive libraries of accurate

models from commercially available fixed network

hardware and protocols.Recent versions also include wide

possibilities for wireless network simulations including

support for Zigbee compatible 802.15.4 MAC.

3.7.2 Merits and Limitations

Strength of OPNET in wireless network simulations is the
accurate modeling of the radio transmission. Different

characteristics of physical-link transceivers, antennas and

antenna patterns are modeled in detail. With Wireless suite

for Defence extension OPNET can model 3D outdoor

scenarios and take into account different kinds of obstacles

like terrain shape and buildings[35] . OPNET can also be

used to define custom packet formats.

 A weak point is that there exists only a few ready models

for recent wireless systems.OPNET uses a hierarchical

model to define each aspect of the system. Hierarchical

structure is divided into three levels. The top level consists

of the project editor, where network topology is designed.
The next level is the node level, where individual network

nodes and data flow models are defined. A third level is

the process editor, which uses a finite state machine

approach to support specification of protocols, resources,

applications and queuing policies. Finally, a simulation

tool is included to support the three higher levels. OPNET

also has so-called ESD (External System Domain) for

communicating with external software and systems. Via

ESD external software can exchange data and influence

running simulation in OPNET. [34,36]

3.8 Castalia

The introduction of Castalia and the comparison with other

simulation tools will be discussed in this subsection

3.8.1 Overview

 Castalia is an application-level simulator for Wireless
Sensor Network based on

OMNeT++. It can be used to evaluate different platform

characteristics for specific applications, since it is highly

parametric, and can simulate a wide range of platforms. In

Castalia, sensor nodes are implemented as compound

modules, consisting of sub-modules that represent, for

instance, network stack layers, application, and sensor.

Node modules are connected to wireless channel and

physical process modules[32] . It is a generic simulator

with realistic wireless channel and radio model based on
measured data. Since it is based on the OMNeT++

platform, it can be used by researchers and developers who

want to test their distributed algorithms and/or protocols in

realistic wireless channel and radio models, with a realistic

node behavior especially relating to access of the radio. It

is developed in C++ at the National ICT Australia.

3.8.2 Merits and Limitations

 Castalia merits are physical process modeling, sensing

device bias and noise, node clock drift, and several MAC

and routing protocols implemented. Castalia has a highly

tunable Medium access Control(MAC) protocol and a

flexible parametric physical process model. Distinct

physical process modules in Castalia represent different

sensing devices(e.g. temperature, pressure, light, and

acceleration).Castalia can consider sensing device noise,

bias and node clock drift[33]. It should be noted that
Castalia is not sensor-platform specific. Castalia is meant

to provide a generic reliable and realistic framework for

the first order validation of an algorithm before moving to

implementation on a specific sensor platform. It is not

useful if one would like to test code compiled for a specific

sensor node platform.

4. Summary

The purpose of this survey is to give a general picture of

discrete event simulation tools using in WSNs, and help

people to choose different simulation tools according to

different needs. In the beginning part, this survey

illustrates what is WSNs, why they need simulation, and

what specific features should be considered when

simulating WSNs. Then, this survey analyzes the

simulators: NS-2, TOSSIM, OMNeT++, J-Sim, ATEMU,

Avrora,OPNET,and Castalia and compares their merits

and limitations, shown in Table 1. Both general simulators

and specific simulators are evaluated in this survey. The
general simulators usually lack some functions to provide

specific simulations in WSNs, however specific simulators

with more comprehensive functions may perform better.

According to different targets to choose different

simulation tools in WSNs will be more efficient and

effective.

Table 1: Comparison of Simulation Tools

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

Simulator or
Emulator

Discrete-Event
Simulations

GUI
Open sources and Online
documents

General
simulator or
Specific
simulator

Detail

NS-2 Simulator
Discrete-Event
Simulation

No Yes
general
simulator

1.can not simulate more than 100
nodes, 2 can not simulate
problems of the bandwidth or the
power consumption in WSNs

TOSSIM Emulator
Discrete-Event
Simulation

Yes Yes
specifically
designed for

WSNs

1.can support thousands of nodes
simulation 2.can emulate radio
models and code executions
3.only emulate homogeneous

applications 4.have to use
PowerTOSSIM to simulate power
consumption

OPNET Simulator
Discrete-
Event Simulation

Yes Yes
General
simulator

1.can not support large number of
sensors simulation
2.can support Zigbee compatible
802.15.4 MAC protocols
3. 3D radio modelling

OMNeT++ Simulator
Discrete-Event
Simulation

Yes
noncommercial
license,commercial license

general
simulator

1.can support MAC protocols and
some localized protocols in WSN
2.simulate power consumptions
and channel controls 3. limited
available protocols

J-Sim Simulator
Discrete-Event
Simulation

Yes Yes
general
simulator

1. can simulate large number of
sensor nodes, around 500 2. can
simulate radio channels and
power consumptions 3. its
execution time is much longer

ATEMU Emulator
Discrete-Event

Simulation
Yes Yes

specifically
designed for
WSNs

1.can emulate different sensor
nodes in homogeneous networks
or heterogeneous networks 2.can

emulate power consumptions or
radio channels 3. the simulation
time is much longer

Avrora Simulator
Discrete-Event
Simulation

No Yes
specifically
designed for
WSNs

1. can support thousands of nodes
simulation 2.can save much more
execution time

Castalia Simulator
Discrete-Event
Simulation

yes
noncommercial
license,commercial license

General
simulator

1.can support Physical process
modeling, sensing device bias
and noise, node clock drift
2.several MAC
and routing protocols supported.

5.References

[1]. M. Ilyas and I. Mahgoub, Handbook of sensor networks:
 compact wireless and wired sensing systems,
 BocaRaton, FL., CRC Press, 2004.

[2]. J. Liu, et. al., “Simulation modeling of large-scale ad-hoc
 sensor networks,” European Simulation Interoperability
 Workshop 2001, London, Eng land, June 2001.

[3]. I.F. Akyildiz and W. Su and Y. Sankarasubramaniam and E.
 Cayirci, “A Survey on Sensor Networks,” IEEE
 Communication Magazine, vol. 40, no. 8, pp. 102-116, Aug.
 2002.

[4]. David Curren, “A survey of simulation in sensor networks,”
 University of Binghamton, NY, 2005.

[5]. John Heidemann, Kevin Mills, Sri Kumar, Expanding
 Confidence in Network Simulations.

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

[6]. E. Egea-López, J. Vales-Alonso, A. S. Martínez Sala,Pavón-
 Mariño, J. García-Haro,Simulation Tools for Wireless
 Sensor Networks.

[7]. Mekni, M. Moulin, A Survey on Sensor Webs Simulation
 Tools.

[8]. WeiChung,Hu MingLun, Lee TzungShian, Tsai Hewijin,
 Christine Jiau, A GUI Simulation Model in Supporting
 Embedded Software Design.

[9.] [Jain91]Raj Jain, “Art of Computer Systems Performance
 Analysis Techniques For Experimental Design
 Measurements Simulation And Modeling”, Wiley
 Computer Publishing, John Wiley & Sons, Inc, 1991,
 ISBN: 0471503363.

[10]. [Imran10]Muhammad Imran, Abas Md Said,Halabi
 Hasbullah, “A Survey of Simulators, Emulators and

 Testbeds for Wireless Sensor Networks”, Information
 Techonology(ITSim), 2010 International Symposium in,
 June 2010, pp. 897 – 902. ISBN: 978-1-4244-6715-0.

[11] .[Sinha09]Sourendra Sinha, Zenon Chaczko, Ryszard
 Klempous, “SNIPER: A WirelessSensor Network
 Simulator”, Compute Aided Systems Theory- EUROCAST
 , 2009 Volume 5717/2009, pp. 913-920.

 [12] .[Egea05]E. Egea-Lopez, J. Vales-Alonso, A. S. Martinez-
 Sala, P. Pavon-Marino, J. Garcia- Haro;Simulation Tools
 for Wireless Sensor Networks”, Summer Simulation
 Multiconference, SPECTS, 2005, pp.2-9, URL:
 http://ait.upct.es/~eegea/pub/spects05.pdf

 [13] .[Yi08]Sangho Yi, Hong Min, Yookun Cho, Jiman

 Hong,“SensorMaker: A Wireless Senso Network Simulator
 for Scalable and Fine-
 GrainedInstrumentation”,computational
 science and its application-ICCSA, 2008,
 Volume5072/2008, pp. 800-810.

 [14].[Xue07]Yunjiao Xue, Ho Sung Lee, Ming Yang,
 Kumarawadu, P., Ghenniwa, H.H., Weiming Shen,

 “Performance Evaluation of NS-2 Simulator for
 Wireless Sensor Networks”, Electrical and

 Computer Engineering, CCECE Canadian Conference on,
 22-26 April 2007, pp.1372 – 1375, ISBN: 1-4244-1020-7.

 [15].[NS-2_wiki]“NS-2”, URL: http://en.wikipedia.org/wiki/Ns-
 2, Description: an introduction of NS-2 in wiki webpage.

 [16]. [NS-2_isi]“NS-2”,URL: http://www.isi.edu/nsnam/ns/,
 Description: a webpage introduced NS-2.

 [17]. [Stevens09]Clay Stevens, Colin Lyons, Ronny
 Hendrych, Ricardo Simon Carbajo, Meriel Huggard,
 Ciaran Mc Goldrick, “Simulating Mobility in WSNs:
 Bridging the gap between ns- 2 and TOSSIM 2.x”, 13th
 IEEE/ACM International Symposium on Distributed
 Simulation and Real Time Applications, 2009, ISBN: 978-

 0-7695-3868-6.

 [18].[C++]“C++”, URL: http://en.wikipedia.org/wiki/C++,
 Description:an introduction of C++ in wiki webpage.

[19]. Description: an introduction of GUI in wiki webpage.

[20]. [TOSSIM]“TOSSIM”, URL:
 http://docs.tinyos.net/index.php/TOSSIM, Description: a
 webpage introduced TOSSIM.

[21]. [Polley04]J. Polley, D. Blazakis, J. McGee , D. Rusk, J.S. Baras,
 “ATEMU: A Fine-grained Sensor Network Simulator”, First

 Annual IEEE Communications Society Conference on Sensor
 and Ad Hoc Communications and Networks, Santa Clara,
 CA, October 4-7, 2004.

[22]. [Stevens09]Clay Stevens, Colin Lyons, Ronny Hendrych,
 Ricardo Simon Carbajo, Meriel Huggard, Ciaran Mc Goldrick,
 “Simulating Mobility in WSNs: Bridging the gap between
 ns-2 and TOSSIM 2.x”, 13th IEEE/ACM International

 Symposium on Distributed Simulation and Real Time
 Applications, 2009, ISBN: 978-0-7695-3868-6

[23]. [Levis03]Philip Levis, Nelson Lee, Matt David Culler,
 “TOSSIM: Accurate and Scalable Simulation of Entire TinyOS
 Applications”, SenSys, 2003, ISBN:1-58113-707-9, URL:
 http://portal.acm.org/citation.cfm?id=958506

[24]. [Shu08]Lei Shu,Chun Wu,Yan Zhang,Jiming Chen,Lei

 Wang,Manfred Hauswirth, “NetTopo: Beyond Simulator and
 Visualizer for Wireless Sensor Networks”, Future Generation
 Communication and Networking - FGCN , 2008, Volume1, pp.
 17-20, ISBN: 978-0-7695-3431-2.

[25].[Python]“Python”, URL: http://en.wikipedia.org/wiki/Python,
 Description: an introduction of Python in wiki webpage.

[26].[PowerTOSSIM]“PowerTOSSIM”, URL:
 http://www.eecs.harvard.edu/~shnayder/ptossim/
 Description: a webpage introduced PowerTOSSIM.

[27].[Omnet++_wiki]“Omnet++”, URL:
 http://en.wikipedia.org/wiki/Omnet%2B%2B,
 Description: an introduction of Omnet++ in wiki
 webpage.

[28].[Omnet++]“Omnet++”, URL:
 http://www.omnetpp.org/home/what-is-omnet,
 Description: a webpage introduced Omnet++.

[29].[J-sim]“J-sim” , URL
 http://sites.google.com/site/jsimofficial/, Description: a
 webpage introduced J-sim.

[30].[ATEMU]“ATEMU”, URL:
 http://www.hynet.umd.edu/research/atemu/, Description: a
 webpage introduced ATEMU.

[31].[Avrora]“Avrora”, URL:
 http://compilers.cs.ucla.edu/avrora/, Description: a webpage
 introduced Avrora.

[32].S. Park, A. Savvides, and M. B. Srivastava, “Simulating

International Journal of Computer Science and Network (IJCSN)
Volume 1, Issue 5, October 2012 www.ijcsn.org ISSN 2277-5420

networks of wireless sensors,” Winter Simulation
Conference, Arlington, Virginia, Dec. 2001.A. Boulis,

 “Castalia, a simulator for wireless sensor networks and
body area networks,” version 2.0,User’s manual, May
2009 [Online]. Available: http://castalia.npc.nicta.com.au/.
 Retrieved:02/04/2010 B. Boulis, “Castalia: Revealing
pitfalls in designing distributed algorithms in WSN,” 5th Int.
Conf. on Embedded Networked Sensor Systems, Sydney,
Australia, Nov. 2007.

[33]. L. Girod, et al., “EmStar: An environment for
developing wireless embedded system software,” USENIX
Technical Conference, Boston, MA, June 2004.

[34] www.opnet.com/solutions/brochures/Modeler.pdf (Read
 5.2.2008)

[35] www.opnet.com/solutions/network_rd/mode ler_ wi

 reless_defense.html (Read 10.2.2008

[36].Prokkola, J.(2006), “OPNET – Network
simulator”,VTT Technical Research Center of Finland 106

