
IJCSN International Journal of Computer Science and Network, Vol 2, Issue 2, April 2013 1
ISSN (Online) : 2277-5420

CrossCrossCrossCross----site Scripting Attacks on Android WebViewsite Scripting Attacks on Android WebViewsite Scripting Attacks on Android WebViewsite Scripting Attacks on Android WebView

1Bhavani A B

1Hyderabad, Andhra Pradesh-500050, India

Abstract
WebView is an essential component in Android and iOS. It

enables applications to display content from on-line resources. It

simplifies task of performing a network request, parsing the data

and rendering it. WebView uses a number of APIs which can

interact with the web contents inside WebView. In the current

paper, Cross-site scripting attacks or XSS attacks specific to

Android WebView are discussed. Cross-site scripting (XSS) is

a type of vulnerability commonly found in web applications.

This vulnerability makes it possible for attackers to run

malicious code into victim’s WebView, through HttpClient APIs.

Using this malicious code, the attackers can steal the victim’s

credentials, such as cookies. The access control policies (i.e.,

the same origin policy) employed by the browser to protect those

credentials can be bypassed by exploiting the XSS vulnerability.

Keywords: Cross-site scripting Attacks, Web View, Http Client.

.

1. Introduction

Many of the Android applications display web content

and also interact with it. This is possible by exposing a

web browser as a standalone component and embedding it

in the application. Such a component is called as

WebView. It uses WebKit rendering engine to display

web pages. It also enables developers to incorporate

browser functionalities such as rendering, navigation etc.

in the application.

1.1 Introduction to WebView APIs

There are two types of APIs in WebView, the Web-based

APIs and the UI based APIs [2]. Web-based APIs are

designed to interact with the web-contents inside the

WebView. Examples of these APIs include loadURL,

CookieManager.getCookie, etc. Attacks described in [1]

target the Web-based APIs. WebView is subclass of a

more generic View class.

View is the base class for widgets, which are used to

create interactive UI components (buttons, text fields, etc).

Therefore, WebView inherits the APIs of super class.

Such APIs are UI-based APIs. Attacks describe in [2]

target the UI based APIs. WebView APIs are described in

detail in section 2.

1.2 Overview of the work and contribution

In the current paper, Cross-site scripting attacks on

android WebView are investigated. Such attacks can be

modeled using the interaction of Web-based APIs with the

HttpClient. Using the should Override Urlloading() hook,

the loadURL method can be intercepted, and the cookies

can be stolen from the user’s mobile. The scripts residing

at the server can be run on the Android device and stolen

cookies can be sent to the server through HttpGet and

HttpPost APIs. The stealing of cookies may lead to several

vulnerabilities such as Session Hijacking and

impersonating the user through his cookies. The attacks

may also result in stealing of sensitive information from

the phone such as phone’s contacts.

2. Web View APIs

The package which provides tools for Android application

to browse the web is android. webkit. The package

contains number of classes and interfaces. The most

important class of the package is the WebView. It enables

the developer to embed a built-in Web browser as widget,

for displaying HTML content and browsing the web. In

addition to WebView, android. webkit provides several

other classes such as CookieManager,

CookieSyncManager, WebChromeClient, WebViewClient

etc. Jointly, these classes expose many APIs to Android

applications. Based on their purposes, these APIs can be

divided into two main categories, the Web-based APIs

and UI based APIs [2]. In the current paper, we focus

only on the Web-based APIs and their interaction with

HTTP client. The paper also focuses on APIs related to

two classes, WebViewClient and CookieManager.

2.1 Web-page related hooks

Android applications can monitor the events that occurred

within WebView. This is done through the hooks

provided by the WebViewClient class. Once triggered,

these hook functions can access the event information,

and may change the consequence of the events. To use

these hooks, Android applications should first create a

WebViewClient object, and then tell WebView to invoke

the hooks in this object, when the intended events have

IJCSN International Journal of Computer Science and Network, Vol 2, Issue 2, April 2013 2
ISSN (Online) : 2277-5420

occurred inside WebView. WebViewClient has already

implemented the default behavior basically doing nothing

for all the hooks. If we want to change that, we can

override the hook functions with our own implementation.

This is described in the code fragment below:

2.2 Cookie Manager

HTTP cookie, commonly referred to as just "cookie" is a

parcel of text sent back and forth between a web browser

and the server it accesses. Without a cookie, a web server

cannot distinguish between different users, or determine

any relationship between sequential page visits made by

the same user. The CookieManager class in Android is

used to manage cookies used by application's WebView.

This class provides a number of public methods such as

getCookie, acceptCookie() etc.

3. HttpClient APIs

HttpClient Class is an interface for HTTP client. The

most essential function of HttpClient is to execute HTTP

methods. Execution of an HTTP method involves one or

several HTTP request / HTTP response exchanges,

usually handled internally by HttpClient. The user is

expected to provide a request object to execute and

HttpClient is expected to transmit the request to the target

server return a corresponding response object, or throw an

exception if execution was unsuccessful.

As shown in the code above, DefaultHttpClient is the

default implementation of the HttpClient interface.

3.1 HttpRequest

All Http Requests have a request line consisting of a

method name, a request URI and a HTTP protocol version.

HttpClient supports out of the box all HTTP methods

GET, HEAD, POST, PUT, DELETE, TRACE and

OPTIONS. There is a specific class for each method type:

HttpGet, HttpHead, HttpPost, HttpPut, HttpDelete,

HttpTrace, and HttpOptions. The Request-URI is a

Uniform Resource identifier that identifies the resource

upon which to apply the request. HTTP request URIs

consists of a protocol scheme, host name, optional port,

resource path, optional query, and optional fragment. The

HttpPost request is show in the code fragment below:

4. Attack Model

Following are the assumptions made in order to launch

attacks successfully:

1. For the attacks described throughout the paper, the

applications need to be granted with permission

Android.permission.INTERNET. This permission is

granted to 86.6% of free applications and 65 percent

of paid applications [10]. Since this permission is

granted to most of the applications, it is quite easy for

the attacker to launch the attacks.

2. The attacks described in the case study in Section 3.2

needs to be granted with permission

android.permission.READ_CONTACT. This

permission is granted to 16.1% of free apps and 11%

of paid apps [10]. Many of the free apps such as

whatsApp are installed with this permission.

3. The paper describes the vulnerabilities in the third

party Android applications. The owner of the web

contents inside WebView, and the developer of the

app are not the same. Therefore, there is a potential

threat from a malicious application.

5. Cross-site scripting attacks

Cross-site scripting (XSS) is a type of computer security

vulnerability typically found in Web Applications. To

protect the user’s environment from malicious code,

browsers use a sand-boxing mechanism that limits a script

to access only resources associated with its origin site.

Unfortunately, these security mechanisms fail if a user

unknowingly executes a malicious script from an

intermediate, trusted site. In this case, the malicious script

is granted full access to all resources (e.g. Authentication

tokens and cookies) that belong to the trusted site. Such

attacks are called cross-site scripting (XSS) attacks.

In the present work, Cross-site scripting attacks on

Android WebView are investigated. By finding ways of

executing malicious scripts through the third party

malicious app on phone, an attacker can gain elevated

access-privileges to sensitive page content, session cookies,

and a variety of other information in the phone such as

contacts. Cross-site scripting attacks in android are also

investigated in [11]. The attacks described in [11] exploits

IJCSN International Journal of Computer Science and Network, Vol 2, Issue 2, April 2013 3
ISSN (Online) : 2277-5420

flaw in the Intent handling mechanism of the Android

browser. In the current paper, cross-site scripting attacks

specific to WebView are investigated.

It has been pointed out by [9] that Android includes a

number of mechanisms to reduce the scope of the

potential issues by limiting the capability of WebView to

the minimum functionality required by the application.

addJavaScriptInterface() allows JavaScript to invoke

operations that are normally reserved for Android

applications. If un-trusted input is allowed, un-trusted

JavaScript may be able to invoke Android methods. Leo

et al. have modeled JavaScript Injection attacks using

WebView's loadUrl() API[1]. The loadUrl() API receives

an argument of string type; if the string starts with

“javascript:”, WebView will treat the entire string as

JavaScript code, and execute it in the context of the web

page that is currently displayed by the WebView

component. This JavaScript code has the same privileges

as that included in the web page. Essentially, the injected

JavaScript code can manipulate the DOM tree and cookies

of the page. In the present work, the possibility of

launching a Cross-site Scripting attacks without using

setJavascriptEnabled() API is investigated. The attacks

can be modeled by executing the scripts residing at the

server and sending the malicious content to server

through Web-Service using HttpGet, HttpPost and

HttpPut APIs. Such attacks result in cookie stealing,

Session hijacking and impersonating user using stolen

cookies. Each of these attacks is described in detail in the

later sections.

5.1 Stealing cookies from the victim's device

The most common behavior of XSS attacks is to gather

cookies. Cookies are small text files that reside on a

user's computer and store name-value pairs along with

some metadata. Cookies are commonly used to store

information intended to be persistent during a browser

session or from session to session, such as session IDs,

user preferences, or login information. The cookie

specifications assume that only the domain that set the

cookie will be able to access it.

Attack Method: When the user runs the application

through the WebView, Android applications can monitor

the events occurred within WebView. We override the

shouldOverrideUrlLoading hook, which is triggered by

the navigation event, (when the user tries to navigate to

another URL). Cookies can be gathered at every page

navigation of the user using the method getCookie() from

CookieManager class as shown in the code fragment

below:

Through HttpPost, malicious script can be run on the

user's Android device, cookies and URL can be sent to

any third party (i.e., the attacker's server), thus avoiding

the same-origin policy or cookie protection mechanism.

The attacker is now able get all the cookies and will be

able to launch several attacks such a Session Hijacking

and impersonating user using stolen cookies. The attacks

described above are quite dangerous as the user sees only

the trusted content and is not aware that his cookies are

being stolen. The attack is shown in Figure 1.

Fig 1: Cookie Stealing

Session Hijacking: Session hijacking is a method of

taking over a Web user session by stealthily obtaining the

session ID and gaining unauthorized access. The session

ID is normally stored within a cookie or URL. Once the

user's session ID has been accessed, the attacker can

masquerade as that user and do anything the user is

authorized to do on the network. From the web server's

point of view, a request from an attacker has the same

authentication as the victim’s requests, thus the request is

performed on behalf of the victim’s session. This usually

results in the attacker being able to perform all normal

web application functions with the same privileges of

legitimate user (e.g. online bill pay, composing an email,

etc.).

IJCSN International Journal of Computer Science and Network, Vol 2, Issue 2, April 2013 4
ISSN (Online) : 2277-5420

Impersonating user using stolen cookies: If a website

uses cookies as session identifiers, attackers can

impersonate users after stealing victim’s cookies. By

stealing cookies of social networking sites, message

boards or forums, the attacker can post a new message in

the victim’s name delete the victim’s post or exploit

user’s credentials without his consent.

Implementation: To demonstrate the feasibility of the

attacks, PHP script is used at the server side to process

POST requests from the malicious application. The POST

method transfers information through HTTP headers.

$_POST associative array in PHP is used to access cookies

sent from the Android device using POST. At the device

side, the details of implementation are as follows:

1. Load the url of the target site using webView.loadUrl

2. Create WebViewClient object to invoke hooks in the

object.

3. With shouldOverrideUrlLoading hook, the host

application gets a chance to take over the control

when a new URL is about to be loaded in the current

WebView.

4. For each of the URL that is overloaded, cookies can

be gathered using cookieManager.getCookie class.

5. The cookies can be sent to the attacker's server using

HTTPclient POST method.

After the attacker gains access to the user's cookies, he

can hijack the user's sessions or impersonate the user

using the cookies. The feasibility of such attacks were

verified using the open source PHP based message board

called phorum[12]. When the user has logged into the

message board through malicious application, using his

username and password, the cookies from the device are

sent through POST method to the attacker's server. The

attacker can use the stolen cookies and login to the

message board with victim's credentials. The attacker can

access the data in victim's account and also impersonate

the victim by posting content on victim's name.

3.2 Accessing Sensitive information from the Android

 Phone

An XSS attack could also use vulnerabilities in android

WebView to scrape useful information out of phone such

as phone's contacts, email ids and phone numbers. The

user is completely unaware of such attacks as the user

views the content from trusted web-pages.

Fig 2: Stealing sensitive information from phone

Case Study: In the following case study, a Cross-site

scripting attack in which phone's contacts are sent to the

attacker's server is demonstrated. Let us assume that the

user installs Facebook app, which is one of the most

popular third party app. The user views the Facebook

login page in the WebView. The malicious application

fetches the sensitive information from the phone such as

user’s contact details, phone numbers, Email-id etc., and

sends it to the attacker’s server through the HttpClient as

shown in Figure 2. The attack is very easy to launch but

difficult to detect. The user is not aware of such attack as

he views only the legitimate content.

Implementation: To demonstrate the feasibility of the

attack, a sample malicious Android application was

developed. The details of the application are as follows:

1. Load the url of the target site using webView.loadUrl.

2. Sensitive information such as user's contacts can be

sent to the attacker's server using HTTPclient POST

method. User views only the legitimate content in his

WebView and does not know that sensitive

information is stolen.

PHP scripts are used at the server side to process POST

requests from the malicious application.

6. Conclusion

In the present work, Cross-site scripting attacks with

respect to Android WebView and HttpClient are studied.

Such type of attack results in stealing of cookies and other

sensitive information such as contacts from the Android

phone. They also result in Session Hijacking and

impersonating user using stolen cookies. The attacks are a

result of breach in the same origin policy of Android

browsers. XSS attacks are easy to execute, but difficult to

IJCSN International Journal of Computer Science and Network, Vol 2, Issue 2, April 2013 5
ISSN (Online) : 2277-5420

detect and prevent. The future work will focus on building

solutions to defend against the attacks on WebView.

References

[1] T. Luo, H. Hao, W. Du, Y. Wang, and H. Yin. Attacks on

webview in the android system. In Proceedings of the 27th

Annual Computer Security Applications,Conference,

pages 343–352. ACM, 2011.

[2] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du.

Touchjacking Attacks on Web in Android, iOS, and

Windows Phone.In Proceedings of the 5th International

Symposium on Foundations & Practice of Security,

October 25-26, 2012.

[3] Suman Saha, Consideration Points Detecting Cross-site

scripting, The Computing Research Repository, vol.908,

2009.

[4] Steven Cook, A Web Developer’s Guide to Cross-Site

Scripting, SANS Institute, GIAC practical repository,

January 11, 2003.

[5] Endler, David. “The Evolution of Cross-Site Scripting

Attacks”. http://www.idefense.com/idpapers/XSS.pdf 20

May 2002.

[6] M Zalweski, Browser security handbook,

http://code.google.com/p/browsersec/wiki/Part2, 2008.

[7] Engin Kirda, Nenad Jovanovic, Christopher Kruegel,

Giovanni Vigna: Client-side cross-site scripting

protection. Computers & Security 28(7): 592-604 (2009).

[8] Android Development Team. Webviewclient hooks list.

http://developer.android.com/reference/android/webkit/W

ebViewClient.html.

[9] Android Development Team. Designing for security,

http://developer.android.com/guide/practices/security.html.

[10] A. P. Felt, K. Greenwood, and D. Wagner. The

effectiveness of application permissions. In proceedings of

the 2nd USENIX conference on Web application

development, WebApps'11, pages 7-7, Berkeley, CA,

USA, 2011.

[11] Backes, Michael. Sebastian Gerling, Phillip von Styp-

Rekowsky. “A Local Cross-Site Scripting Attack against

Android Phones”, Saarland University, Aug 2011.

[12] Phorum: Open Source PHP phorum software,

http://www.phorum.org/

First Author Bhavani A B has done her M.Tech in VLSI and
Embedded Systems from International Institute of Information
Technology, Hyderabad. She has over 3 years of experience in the
Mobile industry in areas related to Embedded Systems, Mobile
technologies and WebKit browser development. Her areas of interest
include Embedded Systems, Mobile technologies, Mobile Security,
WebKit, Digital Signal processing, audio and video codec.

