
IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

184

A Survey on A Survey on A Survey on A Survey on Algorithms for OAlgorithms for OAlgorithms for OAlgorithms for Optimal Path Sptimal Path Sptimal Path Sptimal Path Search in earch in earch in earch in

Dynamic NetworksDynamic NetworksDynamic NetworksDynamic Networks

1 Neeraj Navlakha, 2 Manisha J. Nene

1 Department of Applied Mathematics, Defence Institute of Advanced Technology

Pune, Maharashtra, 411025, India

2 Department of Computer Engineering, Defence Institute of Advanced Technology
Pune, Maharashtra, 411025, India

Abstract - Dynamic networks are prevalent everywhere right

from Internet, Local Area Networks, Mobile Ad hoc networks
to Wireless Sensor Networks. Communication networks, social

networks, Web, transportation networks infrastructures
represent dynamic networks due to the dynamics that influence

its topologies, connectivity, reliability and fault-tolerance. The
network dynamics is rigorously influenced by the input

parameters like data, communication, computational overloads,
data traffic, data congestion, inclusion and exclusion of data

resources over time. Hence, to identify optimal paths in such

dynamic networks where communication nodes come and go,
network communication edges may crash and recover, is a

non-trivial problem. In this paper we present a rigorous study
on various shortest path finding algorithms in dynamic
networks. Although the research on this problem spans over

more than thirty years, in the last couple of years many novel
algorithmic techniques have been proposed. An arduous effort

is made to abstract some combinatorial and algebraic
properties. Also, common data-structural tools that are at the
base of those techniques are described and compared.

Keywords- Dynamic networks, dynamic graph problems,

dynamic shortest paths, complexity

1. Introduction

A fundamental problem in communication networks is

finding optimal routes for transmitting data packets. To

minimize communication time and cost, many routing
schemes deliver packets along shortest routes. To speed

up the task of finding optimal paths, routers use pre-

computed lookup tables. In many scenarios, however,

the costs associated with network links and the structure

of the network itself may change dynamically over time,

forcing continuous recalculations of the routing tables. A

typical example is routing in ad hoc wireless networks,

where collections of wireless mobile hosts form a

temporary network without the aid of any established

infrastructure or centralized administration. In such an

environment, it may be imperative for one mobile host
to find intermediate hosts in forwarding a data packet to

its destination, due to the restricted range of each mobile

hosts wireless transmissions. Transmission protocols

need to adapt fast to routing changes when host

movement is persistent, while requiring little or no

overhead during periods in which hosts move less

frequently. [4]

In this paper a survey is made on a number of recent

algorithmic techniques for maintaining shortest routes in

dynamic graphs. For the sake of generality, focus is done

on the all-pairs version of the problem (APSP), where

one is interested in maintaining information about

shortest paths between each pair of nodes. Many of the

techniques described in this paper can be specialized for

the case where only shortest paths between a subset of

nodes in the network have to be maintained.

A dynamic graph algorithm maintains a given property P
on a graph subject to dynamic implementations, such as

edge insertions, edge deletions and edge weight updates

and should process queries on property P quickly, and

perform update operations faster than re-computing from

scratch, as done by the fastest static algorithm. If an

algorithm is fully dynamic it can handle both edge

insertions and edge deletions efficiently. A partially

dynamic algorithm can handle either edge insertions or

edge deletions. We say that it is incremental if it

supports insertions only, and if it supports deletions only

it is decremental. In this paper, survey is done for fully
dynamic algorithms for maintaining information about

shortest path [1].

1.1 Literature Survey

The first papers on dynamic shortest paths date back to

1967 �5,6,7�. In 1985, Even, Gazit and Rohnert �8,9�
presented algorithms for maintaining shortest paths on

directed graphs with arbitrary real weights. Their

algorithms required O�n
� per edge insertion and also
the worst-case bounds for edge deletions were

comparable to re-computing APSP from scratch.

Two classic algorithms for the single-source shortest-

path (SSSP) problem are the Bellman Ford algorithm
�11� and the Dijkstra’s algorithm �10� . They have

O�nm� and O�n
� time complexities, respectively,

where n is the number of vertices and m is the number of

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

185

edges in a graph. The Dijkstra’s algorithm is used in a

network where each edge has a positive length (or

weight) value. The Bellman-Ford algorithm can be

applied in the situation when edge lengths are negative.

For the APSP problem, the Floyd-Warshall algorithm is

a classic algorithm which has the time complexity

of O�n��.

Many algorithms have been proposed by improving or

combining the above classical algorithms. For example,

based on the Dijkstra’s algorithm, Orlin et al. �12�
proposed a faster algorithm for the SSSP problem in

networks with few distinct positive lengths.

Goldberg et al. �13� proposed an efficient shortest path

algorithm which combines with A* search. Roditty and

Zwick �14� studied the dynamic shortest path problems
and proposed a randomized fully dynamic algorithm for

the APSP problem in directed unweighted graphs. For

directed graph with real edge weights, Pettie’s
�15� algorithm solves the APSP problem in O�nm +
n
loglogn� time. Chan �16� firstly obtained an

algorithm with time complexity O�n� logn⁄ � in 2005,
which is the best-known result for the APSP problem in

a directed graph.

1.2 Some Definitions and Terminology

Conceptually, a graph is formed by vertices and edges
connecting the vertices.

Formally, a graph is a pair of sets (V, E), where V is the

set of vertices and E is the set of edges, and formed by

pairs of vertices. E has elements which can occur more

than once so that every element has a multiplicity.

Usually, we label the vertices with letters (for example:

v1, v2, . . . or a, b, c, . . . or) or numbers 1, 2, . . .

Throughout this paper, we will label the elements of V

in this way.

We label the vertices as follows:

We have V = {v1, . . . , v5} for the vertices and E = {(v1,
v2), (v2, v5), (v5, v5), (v5, v4), (v5, v4)} for the edges.

Similarly, we often label the edges with letters (for

example: a, b, c, . . . or e1, e2, . . .) or numbers 1, 2, . . .

for simplicity.

A path is a graph P = (V, E) of the form V = {v1,

v2,...., v� } E = {v1-v2, v2-v3,…..vn-1-vn}.

where, n ≥ 1 and vertices v1, . . . , v� are all distinct.

Vertices v1 and v� are the endpoints of the path. Note

that a path may consist of a single vertex, in which case

both endpoints are the same.

The problem of finding a path between two vertices (or

nodes) in a graph such that the sum of the weights of its

constituent edges is minimized is shortest path problem.

1.3 Organisation of the paper

The remainder of this paper is organized as follows. In

Section 2 we describe the newest dynamic shortest path

algorithms. In Section 3 we made comparisons among
the experimental results of all the algorithms discussed.

In Section 4 we list some concluding remarks and open

problems.

2. Algorithmic Techniques

2.1 Algorithmic Techniques for Maintaining

Shortest Routes in Dynamic Networks

The Problem:

Let G = (V, E) be a weighted directed graph. The

authors [1] consider the problem of maintaining a data

structure for G under an intermixed sequence of update

and query operations of the following kinds:

• Decrease (v, w): decrease the weight of edges incident

to v in G as specified by a new weight function w. They
call this kind of update a v-Centered decrease in G.

• Increase (w): increase the weight of edges in G as

specified by a new weight function w.

• Query(x, y): return the distance between x and y in G.

They considered generalized update operations where

they can modify a whole set of edges, rather than a

single edge. Also, they do not address the issue of

returning actual paths between vertices, and they just

consider the problem of answering distance queries.

In this section the authors [1] describe how to maintain
all pairs shortest paths in a directed graph with non-

negative integer edge weights less than C in

O�n
. !C log n# amortized time per update operation.

Data Structure:

Given a weighted directed graph G, they maintain for

each vertex v:

• A shortest paths tree Out& of G of depth

d ≤ !nC log n rooted at v;

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

186

• A shortest paths tree Inv of G* depth d ≤
!nC log n rooted at v, where G* is equal to G,

except for the direction of edges, which is

reversed;

• A set S containing !nC log n vertices of G

chosen uniformly at random, referred to as

“blockers”;

• A complete weighted directed graph Gs with

vertex set S such that, with very high

probability, the weight of (x, y) in Gs is equal

to the distance between x and y in G.

• An integer distance matrix dist.

They [1] maintained the trees with instances of the data

structure adapted to deal with weighted directed graphs

and to include only short paths, i.e., vertices of distance

up to d from the root. Information about longer paths

will be obtained by stitching together these short paths.

Implementation of Operations:

The main idea of the algorithm [1] is to exploit the long

paths property, maintaining dynamically only shortest

paths of (weighted) length up to !C log n with the data

structure, and stitching together these paths to update

longer paths using any static O�n�� all pairs shortest

paths algorithm on a contraction with

O�!nC log n# vertices of the original graph. Following

are the operations:

• Decrease (v, w): rebuild Inv and Out& to update
Gs, i.e., paths of length up to d. Apply the

algorithm Stitch below to update longer paths.

• Increase (w): update edges with increased

weight in any Inv and Out& which contains

them, and then update Gs, i.e., paths of length

up to d. Apply the algorithm Stitch below to
update longer paths.

• Query(x, y): return dist(x, y).

Features of the stitching algorithm are given below:

+,-,./� �

(1) Let 0123 �4��5, 6� be the distance from x to y of length up to

d, obtained from all the trees Inv and 7839 .

(2) Compute the distances 0123� � between all vertices in S

using any static 7�:�� APSP algorithm on Gs.

(3) Compute the distances from vertices in V to vertices in S.

This can be done for a pair

x ϵ V and s ϵ S by computing:

 dist(x, y)→min{dist(d)(x, y), ;-< = > +?dist(x, s)+dist(d)(s, y)}.

Analysis:

The stitching algorithm is dominated by the last step,

which takes time O�n
|S|� B O�n
�n log n d⁄ �# .

Shortest path trees of length up to d can be maintained in

O�n
d� amortized time. Choosing d B Θ�!nC log n#

yields an amortized update bound of O�n
. !C log n#.

2.2 Algorithm for Time Dependent Shortest Safe

Path on Transportation Networks

Proposed Algorithm:

The authors [2] initially outline the proposed algorithm,

named TDSSP. Then they explain a sub-algorithm named

Arrival-Time, which is to calculate the earliest arrival-

time functions for TDSSP.

Let R be the set of the arrived edges with danger factor

larger than the given upper bound Ω. The algorithm

TDSSP searches for the shortest safe path P* from vC to vD

on the graph GT utilizing the set R and the earliest

arrival-time function gE�t� for all is, that are generated in

the first step by the sub-algorithm Arrival-Time (to be

described later). Then, it determines the predecessor of a

node on P* utilizing the backward manner from vD to

based vC on gE�t� and the best starting t*. TDSSP works on
the following three cases.

• Case 1: both safe path with relatively long

travel-time and unsafe path with relatively short

travel-time exist concurrently. In this case it

returns the safe path.

• Case 2: all vC F vD paths are safe. In this case it
returns the shortest one.

• Case 3: no safe path exists for the given Ω. In

this case it returns an unsafe but shortest path.

Input: a time-dependent graph GT, source GH , destination GI , and

starting-time interval T =�3H, 3I�;
Output: a shortest safe path P* from GH to GI for starting time t*;

Algorithm JK++L�MJ, N=, NO, J, Ω�;

/* return(x) means outputting x and terminating the algorithm. */

Begin

1. call Arrival-Time �QR, GH, GI , S, Ω� to generate TU�3�2 and R;

2. if R is not empty then

2.1. Let Г = {t1, t2,···tr}, that is the set of the inflection points of

TI�3�;

2.2. Sort Г in ascending order according to TI�3U� F 3U , where

1 ≤ i ≤ r;

2.3. for each ti ϵ T do

Generate a GH F GI path Pi with starting time ti;

if all edges in Pi are safe then return Pi;

end of if;

3. t* := VWTX1:YZR?TI�3� F 3[; /* select a shortest path */

4. Generate a GH F GI path P* with starting time t*;

Return P*;

End

In the first case, let Г be the set of the inflection points

of gD�t� as described in step 2.1. They sort Г in
ascending order according to the travel time calculated

by gD�tE� F tE in step 2.2. Then they select ti from Г

iteratively and calculate the path Pi. If the path is safe,

algorithm terminates in step 2.3.

In the second case, R is empty. The best starting time t*

with the minimal vC F vD travel time satisfies

that gD�t∗� F t∗ B min^?gD�t� F t[. It can be identified

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

187

according to the earliest arrival-time functions calculated

by algorithm TDSSP in step 3. They initialize v_ to

destination vE, and the optimal path P* is set to empty in

step 4. Assume that there is no waiting time at each edge

and the predecessor of v_ is vE. If there exists an edge

�vE , v_� in E, such that g_�t∗� B gE�t∗� + wE,_�gE�t∗�� i.e.,

the arrival time at v_, g_�t∗� , is the arrival time at

vE , gE�t∗� plus the edge delay from vE to v_ , then they

iteratively find a predecessor vE of v_ and add

�vE , v_� into the path P* till the path reaches the source

node vC.

The third case corresponds to that, R is not empty and no

safe path is returned in the step 2.3. In this case, similar

calculations are performed as in the second case. But,

the algorithm returns an unsafe but shortest path

calculated by steps 3 and 4, as no safe path exists in this

case.

Now they [3] introduce how to calculate the earliest

arrival-time function gE�t� for the node vE. They propose

the algorithm Arrival-Time for time refinement on FIFO

graphs. It consists of two sections: refinement for

starting-time interval and refinement for arrival-time

function. The former refines the starting-time subinterval

IE B �tC, τE� for each node vE ∈ Gc and the latter refines

gE�t� i.e., gE�t� specifies the earliest vC F vE arrival time

for any starting time t in subinterval �tC, τE� . It is

highlighted that the algorithm Arrival-Time can handle

the time-dependent edge-delay graph by refining the

arrival time for each node with the increase of the time

interval.

From the formal description, it takes five parameters as

the input: time-dependent graph GT with danger factors,

source node vC , destination node vD , starting time

interval T B �tC, tD�, and the given upper bound Ω of
danger factors for the shortest safe path.

Input: a time-dependent graph GT, a query eef�GH, GI , S� with source

GH and destination GI , and starting-time interval S B �3H, 3I� ; danger

factor function set ?0U,g�3�[on edge �GU , Gg�, and a given upper bound

Ω of the danger factor for the shortest path.
Output: ?TU�3�|GU ∈ h[– all earliest arrival-time functions.

Algorithm Arrival-Time�MJ, N=, NO, J, Ω�
/∗ j B ?0U,g�3�[∗/

begin

1. TH�3� ≔ 3; lH ≔ 3H; /*for t ∈ S*/

2. for each GU m GH do TU�3� ≔ ∞ for 3 ∈ S , and lU B 3H;

3. Let Q be a priority queue initially containing pairs �lU , TU �3�� for

all nodes vi ϵ V, ordered by TU�lU � in ascending orders;

4. while |Q |≥ 2 do

4.1. �lU , TU�3�� ≔ 0op8o8o(Q)and �lq , Tq�3�� ≔ head(Q);

4.2. ∆ ≔ X1:stu,U�Tq�lq��|�Gu, GU� ∈ vw;
4.3. ly

U ≔ XV5?3|TU�3� ≤ Tq�lq� + ∆[;
4.4. for each �GU , Gg# ∈ v do

 if 0U,g�lU� ≤ Ω then begin

 Ty
g�3� ≔ TU �3� + tU,g�TU�3�� z{W 3 ∈ �lU , ly

U �;
 Tg�3� ≔ X1:?TU�3�, Ty

U�3�[z{W 3 ∈ �lU , ly
U�

 8|0V3o�}, �lg, Tg�3���

 end of if and for;

 4.5. if 0U,g�lU� ~ Ω for all �GU , Gg# then /*i is fixed now*/

 begin

 Let 0U,g∗�o X1:g?0U,g�TU�lU��[;
 Ty

g∗�3� ≔ TU�3� + tU,g∗�TU�3�� z{W 3 ∈ �lU , ly
U�;

 Tg∗�3� ≔ X1:?Tg∗�3�, Ty
g∗�3�[z{W 3 ∈ �lU , ly

U�;
 update�}, �lg∗ ,Tg∗ �3 ���;

 add 〈�GU , Gg�, TU�lU�〉 1:3{ �;
 end of if;

 4.6. lU ≔ ly
U ;

 4.7. if lU ≥ 3I then

 if GU B GI then return ?TU �3�|GU ∈ h[;
 else enqueue�}, �lU �TU�3����;
 end of while;

5. return?TU�3�|GU ∈ h[;
end.

Firstly, gC�t� and τC are initialized for source node

vC: gC�t� ≔ t and τC ≔ tC (see step 1). This is

corresponding to a trivial case: departing from the

source node vC to itself at any timet�, resulting in the

travel time of value gC�t�� F t� , i.e., 0. For all other

nodes, the earliest arrival-time function gE�t� is

initialized as gE�t� ≔ ∞ which implies that these nodes

are undetermined yet, and τE is initialized as τE B tC for

each i (see step 2).

In step 3, Q is a priority queue containing pairs
�τE, gE�t�� for each node vE ∈ Gc , and these pairs are in

the ascending order according togE�τE�, initially the top

pair in Q is �τC , gC�t�� (see step 3). The while loop in

step 4 conducts time-refinement consisting of the

refinement of starting-time interval (steps 4.1-4.3 and

step 4.6) and the refinement of arrival-time function

(steps 4.4 and 4.5).In each iteration, the earliest arrival-

time function gE�t� is ensured to be well-refined in the

starting-time subinterval IE B �tC, τE� for the node vE. The

algorithm terminates in two cases. The first one is that Q

contains no more than one pair (see step 5), and the

other is that the arrival-time function gD�t� of the

destination node is well-refined in the entire interval T

(see step 4.7).

On the refinement of starting-time interval, the

algorithm dequeues the top pair, denoted as �τE, gE�t�� in

Q in each iteration (see step 4.1). Then the current top

pair namely �τ�, g��t�� is regarded as the basis of the
refinement of starting time interval. Note that the

operation head (Q) retrieves the current top pair but does

not dequeues it from Q. Due to the order of pairs in Q,

they obtain that �gE�τE�� is the earliest arrival time and

�g��τ��� is the second earliest arrival time from source

node vC.

According to the property of FIFO graph Gc , it is

impossible to arrive at the node v� (except vE) before

g��τ�� if they start from vCat time taken in�τ�, tD�. Now,

they fix the node vE and consider an edge �v�, vE� ∈ E at

time g��τ��. Assume that the arrival time to the node

v� is g��τ�� . Thus, the minimum travel time from

v� to vE is ∆ , that is calculated by

min?w�,E�g��τ���|�v�, vE� ∈ E[(see step 4.2). Therefore,

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

188

the next earliest arrival time from vC to vE via any edge
�v� , vE� is g��τ�� + ∆, if starting time t is not less than τ�.

Suppose t is the latest starting time which

satisfies gE�t� ≤ g��τ�� + ∆, then they set it to τ′E (see

step 4.3). From gE�t� ≤ g��τ�� + ∆ for t ∈ �τE, τ′E�; they

conclude that the function gE�t� is well-refined

in� tC, τ′E�. gE�t� is the earliest arrival time from vC to

vE for starting time t ∈ �tC, τ′E�. Therefore, gE�t� is well-

refined in I′E B �tC, τ′E� where IE ⊂ I′E. In the end, they set

τE and IE to τ′E and I′E(see step 4.6), respectively, to refine

the starting time interval.

Now they describe the refinement of the arrival-time

function. Noting that gE�t� is well-refined in the enlarged

subinterval, they can refine g_�t� for all vE ,

where �vE, v_� ∈ E , in starting-time subinterval �τE, τy
E�

(see step 4.4). It is noteworthy that they only need to

refine g_�t� on �τE, τy
E�, (because g_�t�has been already

refined on �tC , τE� and then they [3] update Q with the

latest refined g_�t�.

If the danger factor of edge �vE, v_� at time τE , dE,_�τE� is

larger than the given danger boundary Ω for all �vE, v_� ∈
E, there algorithm then selects an edge �vE, v_∗ � with the

minimal danger factor at time gE�τE� to calculate the

function g_∗ �t�. Firstly, it computes the arrival

time gy
∗�t� at v∗ via edge �vE, v_∗ � for starting time t ∈

 �τE, τy
E� . Then, it updates g_∗ �t� to min?g_∗ �t�, gy

_∗ �t�[in

the interval �τE , τy
E� (see step 4.5). After that, it updates

the priority queue Q, and records the time gE�τE�and the

selected edge �vE , v_∗ � by inserting them into R.

2.3 New Algorithms for All-Pairs Shortest-Paths

Problem

Basic Algorithm:

The well-known Dijkstra’s algorithm uses a simple

breadth-first search approach to find all shortest paths

from a single source to all other vertices in a given

graph. It has the advantages of efficiency and simplicity.

To find all-pairs shortest-paths, the authors [3] apply the

Dijkstra’s algorithm on each vertex iteratively. Such an

intuitive approach is simple but not very efficient.

Figure 1: Example of covered nodes

To improve the Dijkstra’s algorithm on the APSP

problem, the authors proposed a new algorithm that

utilizes information obtained in previous steps to

accelerate the latter process. Let G = (V, E) denotes a

weighted directed graph, where V and E are the set of

vertices and edges respectively. The edge from the

vertex u and v is denoted as (u, v) and its weight is w(u,

v). They give the following definition to illustrate the

main idea of the algorithm.

Definition: If the vertex t is an intermediate vertex on

the shortest path from the vertex u to v, then they say

that v is covered by t.

The Dijkstra’s algorithm uses a breadth-first search

(BFS) method to get shortest paths starting from a single

source. When the vertex t is visited in the search

process, if the shortest paths from t have been obtained

in previous steps, then they can immediately obtain the

shortest paths from sources to all other vertices using t

as an intermediate vertex. In other words, given a source

s, they need not visit other vertices which are covered by

t. Based on this idea; they proposed the following

algorithm which improves the Dijkstra’s algorithm on

solving the APSP problem. Many vertices may be

covered by an intermediate vertex t (see Figure 1 for an

example), so the total time used may be reduced

dramatically.

The following data structures are used in the proposed

algorithm:

• L: the matrix containing the edge weights,

where L�u, v� the weight of edge �u, v�. If the

edge �u, v� does not exist, then L�u, v� B ∞;
• D: the distance matrix, where D�u, v� is the

distance from the vertex u to v. Initially,

D�u, v� B ∞; for all vertex pairs;

• flag: the vector to indicate whether the shortest

paths from a vertex to other vertices have been

calculated. All elements of the vector are set to

zero initially. After the shortest paths for vertex

u are calculated, �lag�u� is set to 1.

• Q: the min-priority queue containing the

vertices to be visited. It is the same queue as

that used in the classic Dijkstra’s algorithm.

Procedure 1: Modified Dijkstra’s Procedure
Input: Graph G = (V, E), source s, weight matrix L, distance matrix D,

vector flag

Output: updated distance matrix D, updated vector flag

1. D[s, s] = 0

2. Q = {s}

3. while Q is not empty do

3.1. t=DeQueue(Q)

3.2. if flag[t] = 1, then

for each vertex v ϵ V do

if D[s, t] + D[t, v] < D[s, v] then

 D[s, v] =D[s, t] + D[t, v]

 end of if

end for

 3.3. else

 for each edge (t, v) outgoing from t do

If D[s, t] + L[t, v] < D[s,v] then

 D[s, v] =D[s, t] + L[t, v]

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

189

 Enqueue (Q, v)

 end if

 end for

 end if

end while

4. flag[s] =1

Algorithm 1: Basic Algorithm for the APSP Problem

Input: Graph G= (V, E), weight matrix L

Output: distance matrix D

1. for each vertex v ϵ V do

f lag[v] = 0

2. for each vertex pair (u, v) do

D[u, v] = ∞

3. for each vertex v ϵ V do

4. call the modified Dijkstra’s procedure to get shortest paths

starting from v.

To find all the shortest paths in a graph G, the algorithm

[3] firstly initializes the flag vector by setting all

elements as zero (step 1-2 in Algorithm 1) and initializes

all elements of the distance matrix to be infinity (step 3-

4 in Algorithm 1). Then the modified Dijkstra’s

procedure (Procedure 1) is called iteratively to find

shortest paths starting from every vertex. Compared to

the classic Dijkstra’s algorithm, the step 3.2 in procedure
1 [3] are main stuff newly added. When a vertex t is

visited, if the shortest paths starting from it have been

obtained (flag[t] is set to 1) (step 3.2 in Procedure 1),

then the shortest paths from the source s to other vertices

are updated by using t as an intermediate vertex (step

3.2). After all shortest paths starting from s have been

obtained, they set flag[s] to 1 to indicate it. Other steps

are the same as those in the classic Dijkstra’s algorithm.

The procedure Enqueue(Q, v) adds a vertex v in the min-

priority queue Q. The procedure DeQueue(Q) gets a

vertex from the queue Q which has the smallest shortest-

path starting from s.

The newly-added steps do not change the upper bound

on the time complexity of the algorithm. The proposed

algorithm has the same time complexity than the

Dijkstra’s algorithm. Assume the time complexity of

operations on the min-priority queue is δ, then the time

complexity of proposed algorithm is O�n�δn + m��. For

directed graph with real edge weights, if the queue is

implemented simply as an array, then δ B O�n�and the

time complexity of the algorithm is O�n� + nm� B
O�n��. If the queue is implemented with a Fibonacci

heap, then δ B O�logn� and the time complexity of the

algorithm is O�n
 log n + nm� .For an unweighted

undirected graph, δ B O�1� and the time complexity of

the algorithm is O�n
 + nm� B O�nm�

Optimization for Complex Networks:

Since few nodes in a complex network have large

number of neighbors(neighboring nodes), it is very

possible for these nodes to be in the middle of shortest

paths of other nodes. If the shortest paths from these

high-degree nodes are obtained in advance, then the

visiting of other nodes covered by them can be saved in

the modified Dijkstra’s procedure. Therefore, the order

of vertices to be selected as sources is important for the

algorithm performance in the context of complex

networks.

To determine the order of vertices as sources, one can

simply sort the vertices by their degrees. For example,

one can sort vertices in descending order and select

vertices with high degrees as sources before vertices

with low degrees.

Because a large number of vertices in a complex

network have low degrees, one need not determine the

order for all vertices so that the time complexity of the

selection process can be reduced. For example, one can

use a ratio parameter r (0 < r < 1) to control the selection

process. If nr nodes have been selected, then the

selection process can be stopped and the vertices which

have not been selected will be used as sources in a

random order.

Based on the above ideas, the authors [3] proposed an

optimized algorithm for the APSP problem. The

following data structures are added:

• deg: the vector containing the degrees of

vertices. deg[i] is the degree of the i-th vertex;

• order: the vector containing the indices of

vertices to be used as sources. order[i] is the

index of i-th source vertex.

The optimized algorithm is illustrated by Algorithm

2

Algorithm 2: Optimized Algorithm for the APSP Problem

Input: Graph G = (V, E), weight matrix L, ratio r

Output: distance matrix D

1. for each vertex v ϵ V do

 Flag[v]=0

2. for each vertex pair (u, v) do

 D[u, v]= ∞

3. for i = 1 to n do

 Calculate the degree of the i-th vertex

4. for i = 1 to n do

 order[i] = i

5. for i = 1 to rn do

 5.1 for j = i + 1 to n do

 If deg[order[j]] > deg[order[i]] then

 swap(order[j], order[i])

6. for i = 1 to n do

 call the modified Dijkstra’s procedure using the source of

index order[i]

Step 3 is used to calculate degrees of all vertices and

vertices are selected according to their degrees in steps
4-5. The swap(a, b) operation swaps the values of two

variables a and b.

Calculating degrees of all vertices requires O�m� time.

The selection procedure has the time complexity of

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

190

O�rn
�. Thus, the newly-added steps have the time

complexity of O�m + rn
�.[3]

Adaptive Optimization Algorithm:

An interesting fact is that there is heuristics information

in the modified Dijkstra’s procedure and that

information can be utilized to help selecting sources. In

step 3.3 of the modified Dijkstra’s procedure, if the

condition is true, then the shortest path from source s to

a vertex v may traverse the edge (t, v) temporarily. It

hints that the vertex t is a possible intermediate vertex on

some shortest paths. If the vertex t is used as predecessor

more frequently, it will be possible for it to cover more

vertices. Thus, it should be used as source in advance.

Based on the observations, the authors [3] proposed an

improved algorithm which can select sources adaptively.

For a vertex t, they use the variable deg[t] to store its

priority to be selected as the source. The variable deg[t]

is initially set to the degree of t, and later updated in the

modified Dijkstra’s procedure. If the condition in step
3.3 of the modified Dijkstra’s procedure is true then

deg�t� B deg�t� + c (1)

where c is a predefined constant, e.g., c = 1. Other steps

in the modified Dijkstra’s procedure are not changed.

The main procedure is stated in Algorithm 3. Since the

vector deg changes in the modified Dijkstra’s procedure,

the algorithm will select vertices as sources adaptively.

Algorithm 3: Adaptive Algorithm for the APSP Problem

Input: Graph G = (V, E), weight matrix L

Output: distance matrix D

1. for each vertex v ϵ V do

 Flag[v]=0

2. for each vertex pair (u, v) do

 D[u, v]= ∞

3. for i = 1 to n do

 Calculate the degree of the i-th vertex

4. for i = 1 to n do

 order[i] = i

5. for i = 1 to n do

 5.1 for j = i + 1 to n do

 If deg[order[j]] > deg[order[i]] then

 swap(order[j], order[i])

 end if

 end for

6. call the modified Dijkstra’s procedure using the source of index

order[i]

Calculating degrees of all vertices requires O�m� time.

The selection procedure in steps 5 has the time

complexity of O�n�Thus; the algorithm 3 has the same

time complexity than the algorithm 1.

3. Experimental Results and Comparison

3.1 For algorithm technique in section 2.1

The main idea of the algorithm [1] is to exploit the long
paths property, maintaining dynamically only shortest

paths of (weighted) length up to !C log n with the data

structure, and stitching together these paths to update

longer paths using any static O�n�� all pairs shortest

paths algorithm on a contraction with O�!nC log n�

vertices of the original graph.

The stitching algorithm is dominated by the last step,

which takes timeO�n
|S|� B O�n
�n log n d⁄ �#. Shortest

path trees of length up to d can be maintained in O�n
d�

amortized time. Choosing d B Θ�!nC log n# yields an

amortized update bound of O�n
. !C log n#.

3.2 For algorithm technique in section 2.2

In this algorithm [2] the authors conducted extensive

experimental studies to compare algorithm TDSSP with

TDSP08, the most efficient discrete-time algorithm�17�.
TDSP08 focuses on finding optimal answers for the TDSP

problem using a continuous-time approach.

Table 1: TDSSP runtime (s) for instances with different upper bounds of
danger factor and different distance between source node and

destination node, on a graph with 33 nodes and 100 edges.

Initially, it computes the earliest arrival-time function

gE�t� for each node vE . Then it checks whether there

exists a vC F vD path by calculating the best starting

time t∗. After that, it generates a path P* corresponding

to the arrival time gD�t∗� for the best starting time t∗ .

Finally, it returns the path P* together with the best

starting time. TDSP08 is able to deal with FIFO time-

dependent graphs, as well as the general time-dependent

graphs, with arbitrary edge-delay functions.

The two algorithm are implemented using C++, on a

3.0GHz CPU/1G memory PC running XP. They test the

two algorithms on a real data set with 16326 nodes and

26528 edges, representing the road-map in the Maryland

State in US. The nodes represent the starts, ends, and

intersections of roads, while the edges represent road

segments.

The continuous piecewise-linear danger-factor functions
?dE,_�t�[are generated randomly in the following

manner. They set four parameters: the average value of

the danger factors (denoted as d�), the range of the danger

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

191

factor (denoted as d�), the length of the domain (denoted

as Lc), and the number of the segments Nc . In the

domain T = [0, LT], T is randomly divided into Nc sub-

intervals. In each sub-interval, dE,_�t� is set to a linear

function. The value of dE,_�t� at the start/end of each

subinterval is randomly generated as a number in [d�−d� ,
 d�+d�] uniformly, where d� is the average value of danger

factor on the edge. The continuous piecewise-linear

edge-delay functions ?wE_�t�[are generated randomly.

 Note that, TDSSP generates the same solution as TDSP08

when Ω = 1.0.

They collect data on a sub-graph of the road-map. The
running time and memory dissipation of the algorithms

are shown in figures 2 and 3 [2], respectively; for

different upper bounds of danger factor that vary from

0.15 to 1.00.

In figure 2 [2], the running time of TDSP08 is 2.06

seconds, as TDSP08 is independent of the danger factor.

The algorithm TDSSP, however, is not. TDSSP is superior

for the case of the danger factor less than 0.5.

Figure 2: Running time of algorithms TDSSP and TDSP08 for different

danger factors, on a graph with 33 nodes and 100 edges.

For example, the running time of TDSSP is about 3

seconds for Ω = 0.25, that is very close to the running

time of TDSP08. The running time gradually increases to

Figure 3: Memory dissipations of TDSSP for different danger factors, on

a sub-graph with 205 nodes and 1000 edges.

20 seconds when Ω increases to 0.5. From that, TDSSP

becomes relatively slow with the increasing boundary of

danger factor. This is because, there are more edges

becoming safe in the graph, with the increasing of the

boundary of danger factor. In this case, the algorithm

TDSSP has to take more processing time to calculate the

earliest arrival time functions for all nodes to select the

shortest safe path.

 On the other hand, the running time of TDSSP increases

with the increasing distance between the source node

and the destination node. It is not difficult to understand

that, the far between the source node and the destination

node, the more calculations are required. But this

increase in running time is valuable as they can find a

path that is both shortest and safe. In addition, these

increases in running time is acceptable for relatively

smaller distance values and smaller upper bounds of
danger factor, in comparison to the running time of

TDSP08 shown in figure 2 [2], that is about 2 seconds.

They also collect the memory dissipations for both

algorithms on the graph with different sizes, for different

upper bounds of the danger factor. Figure 3 [2] show the

simulation results on a relatively larger sub-graph that

consists of 205 nodes and 1000 edges. From figure 3,

they concluded that the corresponding memory

dissipation has the similar changes as the running time.

They also confirm that similar results are also true for

other sub-graphs with different sizes, according to our
extra experimental results. [2]

3.3 For algorithm technique in section 2.3

The newly-added steps do not change the upper bound

on the time complexity of the algorithm. The proposed

algorithm [3] has the same time complexity than the

Dijkstra’s algorithm. Assume the time complexity of

operations on the min-priority queue is δ, then the time

complexity of proposed algorithm is O�n�δn + m��. For

directed graph with real edge weights, if the queue is

implemented simply as an array, then δ B O�n� and the

time complexity of the algorithm is O�n� + nm� B
O�n��. If the queue is implemented with a Fibonacci

heap, then δ B O�log n� and the time complexity of the

algorithm is O�n
 log n + nm�. For an unweighted and

undirected graph δ B O�1� and the time complexity of

the algorithm is O�n
 + nm� B O�nm�.

Introduction of Experiments:

The authors [3] evaluate the performance of the

proposed algorithms on random networks. They

compare their performance in complex networks with

the Erd� os and Rényi (ER) �18� random graph model and

the scale-free Albert-Barab á si (AB) �19� network
model.

In the ER model, each vertex pair is uniformly

connected with a probability p in a network of n nodes.

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

192

There are about pn�n F 1� 2⁄ edges in an ER graph. The

average degree of vertices is 〈k〉 B p�n F 1� ≈ pn. The

degrees of vertices can be represented by the Poission

distribution.

The AB model is an extension of the original Barabási -

Albert (BA) model. In the model, a network initially

contains m0 nodes. Then the network grows using the

following operations�19�:

1. With probability p, add m new edges. For each

edge, one of its end-points is selected randomly

from the existing nodes. Another end-point is

selected with probability

π�kE� B ����
∑ �¡¡ ��

 (2)

where kE is the degree of the i-th node;

2. With probability q, rewire m edges selected

randomly in the network. For each edge, one of

its end-points is changed to another node which
is selected with a probability given by the

Equation (2);

3. With probability 1 F p F q , add a new node

and m new edges connecting the new node to

other existing nodes. Another end-point of each

new edge is also selected with a probability

given by the Equation (2).

Table 2: Parameter Settings in Experiments

Depending on the model parameter values, the AB

model can not only generate networks with power-law

degree distributions, but also networks with exponential

degree distributions. When q < 0.5 then networks with

power-law degree distributions will be generated. The

model parameter values used in their experiments are

given in Table 2 [3].

The algorithms to be compared include the classic

Dijkstra’s algorithm which is called iteratively using

every vertex as source, algorithm 1, algorithm 2 and
algorithm 3 [3].

For each parameter setting, they [3] randomly generate

50 network instances and run the algorithms on them.

Then, the running time is averaged on all instances.

The test platform is a laptop with Intel Core i7-2640M

CPU and 4GB memory, running Fedora 16 (Linux core

3.1.0-7) operating system.

Effects of Algorithm Parameters:

(a) ER model

(b) AB model

Figure 4: Effects of parameter r

The Authors [3] test the performance of algorithms on

different algorithm parameter values. The node number

is set to 1000 for the ER model and 3000 for the AB
model.

With different values of parameter r, the performance of

algorithm 2 is demonstrated in Figure 4 [3]. It is shown

that the average running time slightly increases with the

increasing of r in cases of ER model. It seems that the

optimization strategy is not useful in random networks

of the ER model. In scale-free networks of the AB

model, however, the average running time decreases

with increasing of r. The average running time does not

change significantly when r > 0.3. Thus, they can use a

small value of r in algorithm 2 to improve the algorithm

performance in scale-free networks.

The performance of algorithm 3 with different values of

parameter c is demonstrated in Figure 5. The average

running time does not change much in most cases.

Therefore, they can assume that the value of c has little

impact on the performance of the algorithm 3. [3]

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

193

(a) ER model

(b) AB model

 Figure 5: Effects of parameter c

Comparison of Algorithm Performance:

The Authors [3] compare the performance of the classic

Dijkstra’s algorithm and the algorithm 1 on random

networks of ER model and AB model.

Table 3: Coefficients on Cases of ER Model

From Figure 6a, [3] they show that the average running

time increases with the increasing of node number. The

algorithm 1 outperforms than the Dijkstra’s algorithm in

random networks of ER model with different link

probability. Both algorithms have the same level of time

complexity which is O�n��, but with different factors.
Let the time complexity of Dijkstra’s algorithm be

O�a�n�� and the time complexity of algorithm 1

be O�a�n��.

Using polynomial regression method, they obtain the

values of a� and a� in each case. The results are shown
in Table 3. From the table, one can see that the

coefficient ratio �a� a�⁄ � increases with the increasing of

probability p.

(a) ER model

(b) AB model

Figure 6: Comparison with Dijkstra’s Algorithm

When p = 0.8, the average running time of the algorithm

1 is about 85% of the time of the Dijkstra’s algorithm.

When p drops down to 0.2, the algorithm 1 takes only

about 22% running time of the Dijkstra’s algorithm.

Thereby, our algorithm is very efficient in cases of
sparse random networks.

Figure 6b [3], shows the log-log curve of the average

running time in scale-free networks of AB model.

Interestingly, they find that the performance of

algorithm 1 is significantly better than the performance

of the Dijkstra’s algorithm. The time complexity of

algorithm 1 is even reduced in scale-free networks. From

figure 6b, they show that the average running time

follows the paw-law distribution for both algorithms.

Denote the average running time by y and the node
number by n. The relationship between them can be

expressed by:

 log�y� B b� + b� log�n� (3)

where b� and b� are coefficients.

 The values of b� and b� are calculated using the linear

regression method and the results are shown in Table 4.

It is shown that the time complexity of Dijkstra’s

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

194

algorithm is still O�n��, but the time complexity of

Algorithm 1 is reduced to about O�n
.¥�.

The performance of three proposed algorithms [3] is

compared at last. The results are shown in Figure 7 [3].

It can be observed that the average running time of

algorithm 2 [3] is slightly higher than the other two

algorithms in cases of ER model, while the performance

of algorithm 3 [3] is comparable to that of algorithm 1

[3].

(a) ER model

(b) AB model

Figure 7: Comparison of Proposed Algorithms

However, in cases of AB model, the average running

time of algorithm 2 and the time of algorithm 3 are

lower than the time of algorithm 1 when p is low.

Table 4: Coefficients on Cases of AB Model

When p is high, the performance of algorithm 2 is

comparable to the performance of algorithm 1 while the

performance of algorithm 3 is slightly better than the

other two algorithms. [3]

4. Conclusions and Open Problems

Identifying optimal paths in dynamic networks is a non-

trivial problem. The applications, computations,

processes, data etc. migrate from blade servers to

handheld computational devices and vice-versa which

belongs to a dynamic network demand for runtime

optimal path detections.

Throughout the paper we attempted to present all the
algorithmic techniques within a unified framework by

abstracting the algebraic and combinatorial properties

and the data-structural tools that lie at their foundations.

Simulation results on real-world graph of Maryland

State in US show that the running time and memory

dissipation are acceptable on relatively small network,

and also on enquiry of safe path between a pair of nodes

with relatively short distance. The time complexity is

only about O�n
.¥� when algorithm 3 is applied in scale-
free networks generated by the AB model. The

algorithm performance is slightly improved with the

optimization strategies in scale-free networks.

Recent work has raised some new and perhaps intriguing

questions. First, can we reduce the space usage for

dynamic shortest paths to O�n
�? Second, and perhaps
more important, can we solve efficiently fully dynamic

single-source reachability and shortest paths on general

graphs? Lastly, are there any general techniques for

making increase-only algorithms fully dynamic, remains

unanswered.

Potential Application Areas:

Identifying Optimal Path is a broadly useful problem-
solving model for:

• Maps

• Robot navigation.

• Texture mapping.

• Typesetting in TeX.

• Urban traffic planning.

• Optimal pipelining of VLSI chip.

• Subroutine in advanced algorithms.

• Telemarketer operator scheduling.

• Routing of telecommunications messages.

• Approximating piecewise linear functions.

• Network routing protocols (OSPF, BGP, and

RIP).

• Exploiting arbitrage opportunities in currency

exchange.

• Optimal truck routing through given traffic

congestion pattern.

IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013
ISSN (Online): 2277-5420 www.IJCSN.org

195

References

[1] Camil Demetrescu and Giuseppe F. Italiano.

Algorithmic Techniques for Maintaining
Shortest Routes in Dynamic Networks. Electronic
Notes in Theoretical Computer Science 171 (2007)

3–15.

[2] Wu Jigang, Song Jin, Haikun Ji, Thambipillai

Srikanthan. Algorithm for Time-dependent Shortest
Safe Path on Transportation Networks. International
Conference on Computational Science, ICCS 2011,

Procedia Computer Science 4 (2011) 958–966.
[3] Wei Peng, Xiaofeng Hu, Feng Zhao, Jinshu Su. A

Fast Algorithm to Find All-Pairs Shortest Paths in
Complex Networks. International Conference on

Computational Science, ICCS 2012, Procedia

Computer Science 9 (2012) 557 – 566.
[4] D. B. Johnson and D. A. Maltz. Dynamic source

routing in ad hoc wireless networks. In Imielinski
and Korth, editors, Mobile Computing, volume 353.

Kluwer Academic Publishers, 1996.
[5] P. Loubal. A network evaluation procedure.

Highway Research Record 205, pages 96–109, 1967.

[6] J. Murchland. The effect of increasing or decreasing
the length of a single arc on all shortest distances in a

graph. Technical report, LBS-TNT-26, London
Business School, Transport Network Theory Unit,
London, UK, 1967.

[7] V. Rodionov. The parametric problem of shortest
distances. U.S.S.R. Computational Math. and Math.

Phys., 8(5):336–343, 1968.

[8] S. Even and H. Gazit. Updating distances in dynamic

graphs. Methods of Operations Research, 49:371–
387, 1985.

[9] H. Rohnert. A dynamization of the all-pairs least cost

problem. In Proc. 2nd Annual Symposium on
Theoretical Aspects of Computer Science,

(STACS’85), LNCS 182, pages 279–286, 1985.
[10] E. W. Dijkstra. A Note on Two Problems in

Connexion with Graphs. Numerische Mathematik,

vol.1, pp.269-271, 1959.

[11] R. Bellman. On a Routing Problem. Quarterly of
Applied Mathematics, vol.16, no.1, pp.87-90, 1958.

[12] J. B. Orlin, K. Madduri, K. Subramani, and M.
Williamson. A Faster Algorithm for the Single

Source Shortest Path Problem with Few Distinct

Positive Lengths. Journal of Discrete Algorithms,

vol.8, no.2, pp.189-198, June 2010.
[13] A. V. Goldberg, H. Kaplan, and R. F. Werneck.

Reach for A*: Efficient Point-to-Point Shortest Path

Algorithms. In Proc. of the Eighth Workshop on
Algorithm Engineering and Experiments

(ALENEX’06), Miami, Florida, USA, pp.129-143,
Jan. 2006.

[14] L. Roditty and U. Zwick. On Dynamic Shortest

Paths Problems. Algorithmica, March 2010
(published online).

[15] S. Pettie. A new approach to all-pairs shortest paths
on real-weighted graphs. Theoretical Computer
Science, vol.312, no.1, pp.47-4, Jan. 2004.

[16] T. M. Chan. All-pairs shortest paths with real

weights in O�n� log n⁄ � time. in: Proc. 9th Workshop

Algorithms Data Structures, in: Lecture Notes in
Computer Science, vol.3608, Springer, Berlin, 2005,
pp.318-324.

[17] D. Bolin and Y. J. Xu and Q. Lu, Finding time-

dependent shortest paths over large graphs, in

Proceedings of the 11th international conference on
Extending database technology, France, March 2008,

pp. 205-216.
[18] P. Erd¨os and A. R´enyi. On the Evolution of

Random Graphs. Publications of the Mathematical

Institute of the Hungarian Academy of Sciences,
vol.5, pp.17-61, 1960.

[19] R. Albert and A.-L. Barab´asi. Topology of Evolving
Networks: Local Events and Universality. Physical
Review Letters, vol.85, no.24, Dec. 2000.

