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Abstract - Dynamic networks are prevalent everywhere right 

from Internet, Local Area Networks, Mobile Ad hoc networks 
to Wireless Sensor Networks. Communication networks, social 

networks, Web, transportation networks infrastructures 
represent dynamic networks due to the dynamics that influence 

its topologies, connectivity, reliability and fault-tolerance. The 
network dynamics is rigorously influenced by the input 

parameters like data, communication, computational overloads, 
data traffic, data congestion, inclusion and exclusion of data 

resources over time. Hence, to identify optimal paths in such 

dynamic networks where communication nodes come and go, 
network communication edges may crash and recover, is a 

non-trivial problem. In this paper we present a rigorous study 
on various shortest path finding algorithms in dynamic 
networks. Although the research on this problem spans over 

more than thirty years, in the last couple of years many novel 
algorithmic techniques have been proposed. An arduous effort 

is made to abstract some combinatorial and algebraic 
properties. Also, common data-structural tools that are at the 
base of those techniques are described and compared. 

 

Keywords- Dynamic networks, dynamic graph problems, 

dynamic shortest paths, complexity 

 

1. Introduction 
 

A fundamental problem in communication networks is 

finding optimal routes for transmitting data packets. To 

minimize communication time and cost, many routing 
schemes deliver packets along shortest routes. To speed 

up the task of finding optimal paths, routers use pre-

computed lookup tables. In many scenarios, however, 

the costs associated with network links and the structure 

of the network itself may change dynamically over time, 

forcing continuous recalculations of the routing tables. A 

typical example is routing in ad hoc wireless networks, 

where collections of wireless mobile hosts form a 

temporary network without the aid of any established 

infrastructure or centralized administration. In such an 

environment, it may be imperative for one mobile host 
to find intermediate hosts in forwarding a data packet to 

its destination, due to the restricted range of each mobile 

hosts wireless transmissions. Transmission protocols 

need to adapt fast to routing changes when host 

movement is persistent, while requiring little or no 

overhead during periods in which hosts move less 

frequently. [4] 
 

In this paper a survey is made on a number of recent 

algorithmic techniques for maintaining shortest routes in 

dynamic graphs. For the sake of generality, focus is done 

on the all-pairs version of the problem (APSP), where 

one is interested in maintaining information about 

shortest paths between each pair of nodes. Many of the 

techniques described in this paper can be specialized for 

the case where only shortest paths between a subset of 

nodes in the network have to be maintained. 

 

A dynamic graph algorithm maintains a given property P 
on a graph subject to dynamic implementations, such as 

edge insertions, edge deletions and edge weight updates 

and should process queries on property P quickly, and 

perform update operations faster than re-computing from 

scratch, as done by the fastest static algorithm. If an 

algorithm is fully dynamic it can handle both edge 

insertions and edge deletions efficiently. A partially 

dynamic algorithm can handle either edge insertions or 

edge deletions. We say that it is incremental if it 

supports insertions only, and if it supports deletions only 

it is decremental. In this paper, survey is done for fully 
dynamic algorithms for maintaining information about 

shortest path [1]. 

 
1.1 Literature Survey 
 

The first papers on dynamic shortest paths date back to 

1967 �5,6,7�. In 1985, Even, Gazit and Rohnert �8,9� 
presented algorithms for maintaining shortest paths on 

directed graphs with arbitrary real weights. Their 

algorithms required O�n
�  per edge insertion and also 
the worst-case bounds for edge deletions were 

comparable to re-computing APSP from scratch. 

 

Two classic algorithms for the single-source shortest-

path (SSSP) problem are the Bellman Ford algorithm 
�11� and the Dijkstra’s algorithm �10� . They have 

O�nm�  and O�n
�  time complexities, respectively, 

where n is the number of vertices and m is the number of 
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edges in a graph. The Dijkstra’s algorithm is used in a 

network where each edge has a positive length (or 

weight) value. The Bellman-Ford algorithm can be 

applied in the situation when edge lengths are negative. 

For the APSP problem, the Floyd-Warshall algorithm is 

a classic algorithm which has the time complexity 

of O�n��. 

 
Many algorithms have been proposed by improving or 

combining the above classical algorithms. For example, 

based on the Dijkstra’s algorithm, Orlin et al. �12� 
proposed a faster algorithm for the SSSP problem in 

networks with few distinct positive lengths. 

 

Goldberg et al. �13� proposed an efficient shortest path 

algorithm which combines with A* search. Roditty and 

Zwick �14� studied the dynamic shortest path problems 
and proposed a randomized fully dynamic algorithm for 

the APSP problem in directed unweighted graphs. For 

directed graph with real edge weights, Pettie’s 
�15� algorithm solves the APSP problem in O�nm +
n
loglogn� time. Chan �16�  firstly obtained an 

algorithm with time complexity O�n� logn⁄ �  in 2005, 
which is the best-known result for the APSP problem in 

a directed graph. 

 

1.2 Some Definitions and Terminology 
 

Conceptually, a graph is formed by vertices and edges 
connecting the vertices. 

 
Formally, a graph is a pair of sets (V, E), where V is the 

set of vertices and E is the set of edges, and formed by 

pairs of vertices. E has elements which can occur more 

than once so that every element has a multiplicity. 

Usually, we label the vertices with letters (for example: 

v1, v2, . . . or a, b, c, . . . or ) or numbers 1, 2, . . . 

Throughout this paper, we will label the elements of V 

in this way. 

 
We label the vertices as follows: 

 
We have V = {v1, . . . , v5} for the vertices and E = {(v1, 
v2), (v2, v5), (v5, v5), (v5, v4), (v5, v4)} for the edges. 

Similarly, we often label the edges with letters (for 

example: a, b, c, . . . or e1, e2, . . . ) or numbers 1, 2, . . . 

for simplicity. 

 

A path is a graph P = (V, E) of the form V = {v1, 

v2,...., v� }  E = {v1-v2, v2-v3,…..vn-1-vn}. 

where, n ≥ 1 and vertices v1, . . . , v� are all distinct. 

Vertices v1 and v� are the endpoints of the path. Note 

that a path may consist of a single vertex, in which case 

both endpoints are the same. 

 

The problem of finding a path between two vertices (or 

nodes) in a graph such that the sum of the weights of its 

constituent edges is minimized is shortest path problem. 

 
1.3 Organisation of the paper 
 

The remainder of this paper is organized as follows. In 

Section 2 we describe the newest dynamic shortest path 

algorithms. In Section 3 we made comparisons among 
the experimental results of all the algorithms discussed. 

In Section 4 we list some concluding remarks and open 

problems. 

 

2. Algorithmic Techniques 
 

2.1 Algorithmic Techniques for Maintaining 

Shortest Routes in Dynamic Networks  
 

The Problem:  

 

Let G = (V, E) be a weighted directed graph. The 

authors [1] consider the problem of maintaining a data 

structure for G under an intermixed sequence of update 

and query operations of the following kinds: 

• Decrease (v, w): decrease the weight of edges incident 

to v in G as specified by a new weight function w. They 
call this kind of update a v-Centered decrease in G. 

• Increase (w): increase the weight of edges in G as 

specified by a new weight function w. 

• Query(x, y): return the distance between x and y in G. 

 

They considered generalized update operations where 

they can modify a whole set of edges, rather than a 

single edge. Also, they do not address the issue of 

returning actual paths between vertices, and they just 

consider the problem of answering distance queries. 

 

In this section the authors [1] describe how to maintain 
all pairs shortest paths in a directed graph with non-

negative integer edge weights less than C in 

O�n
. !C log n# amortized time per update operation. 

Data Structure:  

Given a weighted directed graph G, they maintain for 

each vertex v:  

• A shortest paths tree Out&  of G of depth 

d ≤ !nC log n rooted at v; 
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• A shortest paths tree Inv of G*  depth d ≤
!nC log n rooted at v, where G* is equal to G, 

except for the direction of edges, which is 

reversed;  

•  A set S containing !nC log n  vertices of G 

chosen uniformly at random, referred to as 

“blockers”; 

•  A complete weighted directed graph Gs with 

vertex set S such that, with very high 

probability, the weight of (x, y) in Gs is equal 

to the distance between x and y in G.  

• An integer distance matrix dist.  

 

They [1] maintained the trees with instances of the data 

structure adapted to deal with weighted directed graphs 

and to include only short paths, i.e., vertices of distance 

up to d from the root. Information about longer paths 

will be obtained by stitching together these short paths. 

 

Implementation of Operations: 

 

The main idea of the algorithm [1] is to exploit the long 

paths property, maintaining dynamically only shortest 

paths of (weighted) length up to !C log n  with the data 

structure, and stitching together these paths to update 

longer paths using any static O�n��  all pairs shortest 

paths algorithm on a contraction with 

O�!nC log n# vertices of the original graph. Following 

are the operations:  

 

• Decrease (v, w): rebuild Inv and Out& to update 
Gs, i.e., paths of length up to d. Apply the 

algorithm Stitch below to update longer paths. 

• Increase (w): update edges with increased 

weight in any Inv and Out& which contains 

them, and then update Gs, i.e., paths of length 

up to d. Apply the algorithm Stitch below to 
update longer paths. 

• Query(x, y): return dist(x, y). 

Features of the stitching algorithm are given below: 

 
+,-,./� � 

(1) Let 0123 �4��5, 6� be the distance from x to y of length up to 

d, obtained from all the trees Inv and 7839 . 

(2) Compute the distances 0123� � between all vertices in S 

using any static 7�:�� APSP algorithm on Gs. 

(3) Compute the distances from vertices in V to vertices in S. 

This can be done for a pair 

x ϵ V and s ϵ S by computing: 

 

               dist(x, y)→min{dist(d)(x, y), ;-< = > +?dist(x, s)+dist(d)(s, y)}. 

 

Analysis: 

The stitching algorithm is dominated by the last step, 

which takes time  O�n
|S|� B O�n
�n log n d⁄ �# . 

Shortest path trees of length up to d can be maintained in 

O�n
d�  amortized time. Choosing d B Θ�!nC log n# 

yields an amortized update bound of O�n
. !C  log n#. 

2.2 Algorithm for Time Dependent Shortest Safe 

Path on Transportation Networks  

Proposed Algorithm:  

 

The authors [2] initially outline the proposed algorithm, 

named TDSSP. Then they explain a sub-algorithm named 

Arrival-Time, which is to calculate the earliest arrival-

time functions for TDSSP.  

 

Let R be the set of the arrived edges with danger factor 

larger than the given upper bound Ω. The algorithm 

TDSSP searches for the shortest safe path P* from vC to vD 

on the graph GT utilizing the set R and the earliest 

arrival-time function gE�t� for all is, that are generated in 

the first step by the sub-algorithm Arrival-Time (to be 

described later). Then, it determines the predecessor of a 

node on P* utilizing the backward manner from vD  to 

based vC on gE�t� and the best starting t*. TDSSP works on 
the following three cases. 

 

• Case 1: both safe path with relatively long 

travel-time and unsafe path with relatively short 

travel-time exist concurrently. In this case it 

returns the safe path. 

• Case 2: all vC F vD paths are safe. In this case it 
returns the shortest one. 

• Case 3: no safe path exists for the given Ω. In 

this case it returns an unsafe but shortest path. 
 
Input: a time-dependent graph GT, source  GH , destination  GI , and 

starting-time interval T =�3H, 3I�; 
Output: a shortest safe path P* from GH to GI for starting time t*; 

Algorithm JK++L�MJ, N=, NO, J, Ω�; 

/* return(x) means outputting x and terminating the algorithm. */ 

Begin 

 

1. call Arrival-Time �QR, GH, GI , S, Ω� to generate TU�3�2 and R; 

2. if R is not empty then 

2.1. Let Г = {t1, t2,···tr}, that is the set of the inflection points of 

TI�3�; 

2.2. Sort Г in ascending order according to TI�3U� F 3U , where 

1 ≤ i ≤ r; 

2.3. for each ti ϵ T do 

Generate a GH F GI path Pi with starting time ti; 

if all edges in Pi are safe then return Pi; 

end of if; 

3. t* := VWTX1:YZR?TI�3� F 3[; /* select a shortest path */ 

4. Generate a GH F GI  path P* with starting time t*; 

Return P*; 

End 

In the first case, let Г be the set of the inflection points 

of gD�t�  as described in step 2.1. They sort Г in 
ascending order according to the travel time calculated 

by gD�tE� F tE in step 2.2. Then they select ti from Г 

iteratively and calculate the path Pi. If the path is safe, 

algorithm terminates in step 2.3. 

In the second case, R is empty. The best starting time t* 

with the minimal vC F vD travel time satisfies 

that  gD�t∗� F t∗ B min^?gD�t� F t[. It can be identified 
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according to the earliest arrival-time functions calculated 

by algorithm TDSSP in step 3. They initialize v_ to 

destination vE, and the optimal path P* is set to empty in 

step 4. Assume that there is no waiting time at each edge 

and the predecessor of v_ is vE. If there exists an edge 

�vE , v_� in E, such that g_�t∗� B gE�t∗� + wE,_�gE�t∗�� i.e., 

the arrival time at v_, g_�t∗� , is the arrival time at 

vE , gE�t∗� plus the edge delay from  vE to  v_ , then they 

iteratively find a predecessor  vE of  v_ and add 

�vE , v_� into the path P* till the path reaches the source 

node  vC. 

 

The third case corresponds to that, R is not empty and no 

safe path is returned in the step 2.3. In this case, similar 

calculations are performed as in the second case. But, 

the algorithm returns an unsafe but shortest path 

calculated by steps 3 and 4, as no safe path exists in this 

case. 
 

Now they [3] introduce how to calculate the earliest 

arrival-time function gE�t� for the node vE. They propose 

the algorithm Arrival-Time for time refinement on FIFO 

graphs. It consists of two sections: refinement for 

starting-time interval and refinement for arrival-time 

function. The former refines the starting-time subinterval 

IE B �tC, τE� for each node vE ∈  Gc and the latter refines 

gE�t� i.e., gE�t� specifies the earliest vC F vE arrival time 

for any starting time t in subinterval  �tC, τE� . It is 

highlighted that the algorithm Arrival-Time can handle 

the time-dependent edge-delay graph by refining the 

arrival time for each node with the increase of the time 

interval. 

 

From the formal description, it takes five parameters as 

the input: time-dependent graph GT with danger factors, 

source node  vC , destination node  vD , starting time 

interval  T B �tC, tD�, and the given upper bound Ω of 
danger factors for the shortest safe path. 

 
Input: a time-dependent graph GT, a query eef�GH, GI , S� with source 

GH and destination GI , and starting-time interval  S B �3H, 3I� ; danger 

factor function set ?0U,g�3�[ on edge �GU , Gg�, and a given upper bound 

Ω of the danger factor for the shortest path. 
Output: ?TU�3�|GU ∈ h[  – all earliest arrival-time functions. 

Algorithm Arrival-Time�MJ, N=, NO, J, Ω� 
/∗ j B ?0U,g�3�[ ∗/ 

begin 

1. TH�3� ≔ 3; lH ≔ 3H; /*for t ∈ S*/ 

2. for each GU m GH do TU�3� ≔ ∞ for 3 ∈ S , and lU B 3H; 

3. Let Q be a priority queue initially containing pairs �lU , TU �3�� for 

all nodes vi ϵ V, ordered by TU�lU � in ascending orders; 

4. while |Q |≥ 2 do 

4.1. �lU , TU�3�� ≔ 0op8o8o(Q)and �lq , Tq�3�� ≔ head(Q); 

4.2. ∆ ≔ X1:stu,U�Tq�lq��|�Gu, GU� ∈ vw;  
4.3. ly

U ≔ XV5?3|TU�3� ≤  Tq�lq� + ∆[; 
4.4. for each �GU , Gg# ∈ v do 

  if 0U,g�lU� ≤ Ω then begin 

 Ty
g�3� ≔ TU �3� + tU,g�TU�3�� z{W 3 ∈ �lU , ly

U �; 
  Tg�3� ≔ X1:?TU�3�, Ty

U�3�[ z{W 3 ∈ �lU , ly
U� 

  8|0V3o�}, �lg, Tg�3��� 

 end of if and for; 

        4.5. if 0U,g�lU� ~ Ω for all �GU , Gg# then /*i is fixed now*/ 

         begin 

         Let 0U,g∗�o X1:g?0U,g�TU�lU��[; 
  Ty

g∗�3� ≔ TU�3� + tU,g∗�TU�3�� z{W 3 ∈ �lU , ly
U�; 

  Tg∗�3� ≔ X1:?Tg∗�3�, Ty
g∗�3�[ z{W 3 ∈  �lU , ly

U�; 
  update�}, �lg∗ ,Tg∗ �3 ���; 

  add 〈�GU , Gg�, TU�lU�〉 1:3{ �;  
  end of if; 

        4.6. lU ≔ ly
U ; 

        4.7. if lU ≥ 3I then 

     if GU B GI  then return ?TU �3�|GU ∈ h[; 
               else enqueue�}, �lU �TU�3����; 
       end of while; 

5.   return?TU�3�|GU ∈ h[;  
end. 

 

 

Firstly,  gC�t�  and τC are initialized for source node 

vC: gC�t� ≔ t and τC ≔ tC  (see step 1). This is 

corresponding to a trivial case: departing from the 

source node vC to itself at any timet�, resulting in the 

travel time of value gC�t�� F t� , i.e., 0. For all other 

nodes, the earliest arrival-time function gE�t� is 

initialized as gE�t� ≔ ∞ which implies that these nodes 

are undetermined yet, and τE is initialized as τE B tC for 

each i (see step 2). 

 

In step 3, Q is a priority queue containing pairs 
�τE, gE�t�� for each node vE ∈ Gc , and these pairs are in 

the ascending order according togE�τE�, initially the top 

pair in Q is �τC , gC�t�� (see step 3). The while loop in 

step 4 conducts time-refinement consisting of the 

refinement of starting-time interval (steps 4.1-4.3 and 

step 4.6) and the refinement of arrival-time function 

(steps 4.4 and 4.5).In each iteration, the earliest arrival-

time function gE�t� is ensured to be well-refined in the 

starting-time subinterval IE B �tC, τE� for the node vE. The 

algorithm terminates in two cases. The first one is that Q 

contains no more than one pair (see step 5), and the 

other is that the arrival-time function gD�t� of the 

destination node is well-refined in the entire interval T 

(see step 4.7). 

 

On the refinement of starting-time interval, the 

algorithm dequeues the top pair, denoted as �τE, gE�t�� in 

Q in each iteration (see step 4.1). Then the current top 

pair namely �τ�, g��t�� is regarded as the basis of the 
refinement of starting time interval. Note that the 

operation head (Q) retrieves the current top pair but does 

not dequeues it from Q. Due to the order of pairs in Q, 

they obtain that �gE�τE�� is the earliest arrival time and 

�g��τ��� is the second earliest arrival time from source 

node vC. 

 

According to the property of FIFO graph  Gc , it is 

impossible to arrive at the node v� (except  vE ) before 

g��τ�� if they start from vCat time taken in�τ�, tD�. Now, 

they fix the node vE and consider an edge �v�, vE� ∈ E at 

time g��τ��. Assume that the arrival time to the node 

v� is  g��τ�� . Thus, the minimum travel time from 

v� to vE is  ∆ , that is calculated by 

min?w�,E�g��τ���|�v�, vE� ∈ E[ (see step 4.2). Therefore, 



IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013           
ISSN    (Online): 2277-5420       www.IJCSN.org 

188 

 

the next earliest arrival time from vC to vE via any edge 
�v� , vE� is g��τ�� + ∆, if starting time t is not less than τ�. 

Suppose t is the latest starting time which 

satisfies  gE�t� ≤ g��τ�� + ∆, then they set it to τ′E  (see 

step 4.3). From  gE�t� ≤ g��τ�� + ∆ for t ∈ �τE, τ′E�; they 

conclude that the function gE�t� is well-refined 

in� tC, τ′E�. gE�t� is the earliest arrival time from vC to 

vE for starting time t ∈ �tC, τ′E�. Therefore, gE�t� is well-

refined in I′E B �tC, τ′E� where IE ⊂ I′E. In the end, they set 

τE and IE to τ′E  and I′E(see step 4.6), respectively, to refine 

the starting time interval. 

 

Now they describe the refinement of the arrival-time 

function. Noting that gE�t� is well-refined in the enlarged 

subinterval, they can refine g_�t� for all  vE , 

where �vE, v_� ∈ E , in starting-time subinterval �τE, τy
E� 

(see step 4.4). It is noteworthy that they only need to 

refine g_�t�  on  �τE, τy
E�, (because g_�t�has been already 

refined on �tC , τE� and then they [3] update Q with the 

latest refined g_�t�. 

 

If the danger factor of edge �vE, v_� at time τE , dE,_�τE� is 

larger than the given danger boundary Ω for all �vE, v_� ∈
E, there algorithm then selects an edge �vE, v_∗ � with the 

minimal danger factor at time gE�τE� to calculate the 

function g_∗ �t�.  Firstly, it computes the arrival 

time gy
_∗�t� at v_∗  via edge �vE, v_∗ � for starting time t ∈

 �τE, τy
E� . Then, it updates g_∗ �t� to min?g_∗ �t�, gy

_∗ �t�[ in 

the interval �τE , τy
E� (see step 4.5). After that, it updates 

the priority queue Q, and records the time gE�τE�and the 

selected edge �vE , v_∗ � by inserting them into R. 

2.3 New Algorithms for All-Pairs Shortest-Paths 

Problem  

Basic Algorithm:  
 

The well-known Dijkstra’s algorithm uses a simple 

breadth-first search approach to find all shortest paths 

from a single source to all other vertices in a given 

graph. It has the advantages of efficiency and simplicity. 

To find all-pairs shortest-paths, the authors [3] apply the 

Dijkstra’s algorithm on each vertex iteratively. Such an 

intuitive approach is simple but not very efficient.  

 
Figure 1: Example of covered nodes 

 
To improve the Dijkstra’s algorithm on the APSP 

problem, the authors proposed a new algorithm that 

utilizes information obtained in previous steps to 

accelerate the latter process. Let G = (V, E) denotes a 

weighted directed graph, where V and E are the set of 

vertices and edges respectively. The edge from the 

vertex u and v is denoted as (u, v) and its weight is w(u, 

v). They give the following definition to illustrate the 

main idea of the algorithm. 
 

Definition: If the vertex t is an intermediate vertex on 

the shortest path from the vertex u to v, then they say 

that v is covered by t. 

 

The Dijkstra’s algorithm uses a breadth-first search 

(BFS) method to get shortest paths starting from a single 

source. When the vertex t is visited in the search 

process, if the shortest paths from t have been obtained 

in previous steps, then they can immediately obtain the 

shortest paths from sources to all other vertices using t 

as an intermediate vertex. In other words, given a source 

s, they need not visit other vertices which are covered by 

t. Based on this idea; they proposed the following 

algorithm which improves the Dijkstra’s algorithm on 

solving the APSP problem. Many vertices may be 

covered by an intermediate vertex t (see Figure 1 for an 

example), so the total time used may be reduced 

dramatically. 

 

The following data structures are used in the proposed 

algorithm: 

 

• L: the matrix containing the edge weights, 

where L�u, v� the weight of edge �u, v�. If the 

edge �u, v� does not exist, then L�u, v� B ∞; 
• D: the distance matrix, where D�u, v� is the 

distance from the vertex u to v. Initially, 

D�u, v� B ∞; for all vertex pairs; 

• flag: the vector to indicate whether the shortest 

paths from a vertex to other vertices have been 

calculated. All elements of the vector are set to 

zero initially. After the shortest paths for vertex 

u are calculated, �lag�u� is set to 1. 

• Q: the min-priority queue containing the 

vertices to be visited. It is the same queue as 

that used in the classic Dijkstra’s algorithm.  

 
Procedure 1: Modified Dijkstra’s Procedure 
Input: Graph G = (V, E), source s, weight matrix L, distance matrix D, 

vector flag 

Output: updated distance matrix D, updated vector flag 

1. D[s, s] = 0 

2. Q = {s} 

3. while Q is not empty do 

3.1. t=DeQueue(Q) 

3.2. if flag[t] = 1, then 

for each vertex v ϵ V do 

if D[s, t] + D[t, v] < D[s, v] then 

 D[s, v] =D[s, t] + D[t, v] 

 end of if 

end for 

        3.3. else 

  for each edge (t, v) outgoing from t do 

If D[s, t] + L[t, v] < D[s,v] then 

   D[s, v] =D[s, t] + L[t, v] 
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    Enqueue (Q, v) 

   end if 

  end for 

 end if 

end while 

4.   flag[s] =1 

 

 

 
Algorithm 1: Basic Algorithm for the APSP Problem 

Input: Graph G= (V, E), weight matrix L 

Output: distance matrix D 

1. for each vertex v ϵ V do 

f lag[v] = 0 

2. for each vertex pair (u, v) do 

D[u, v] = ∞ 

3. for each vertex v ϵ V do 

4. call the modified Dijkstra’s procedure to get shortest paths 

starting from v. 

 
 

To find all the shortest paths in a graph G, the algorithm 

[3] firstly initializes the flag vector by setting all 

elements as zero (step 1-2 in Algorithm 1) and initializes 

all elements of the distance matrix to be infinity (step 3-

4 in Algorithm 1). Then the modified Dijkstra’s 

procedure (Procedure 1) is called iteratively to find 

shortest paths starting from every vertex. Compared to 

the classic Dijkstra’s algorithm, the step 3.2 in procedure 
1 [3] are main stuff newly added. When a vertex t is 

visited, if the shortest paths starting from it have been 

obtained (flag[t] is set to 1) (step 3.2 in Procedure 1), 

then the shortest paths from the source s to other vertices 

are updated by using t as an intermediate vertex (step 

3.2). After all shortest paths starting from s have been 

obtained, they set flag[s] to 1 to indicate it. Other steps 

are the same as those in the classic Dijkstra’s algorithm. 

The procedure Enqueue(Q, v) adds a vertex v in the min-

priority queue Q. The procedure DeQueue(Q) gets a 

vertex from the queue Q which has the smallest shortest-

path starting from s. 
 

The newly-added steps do not change the upper bound 

on the time complexity of the algorithm. The proposed 

algorithm has the same time complexity than the 

Dijkstra’s algorithm. Assume the time complexity of 

operations on the min-priority queue is δ, then the time 

complexity of proposed algorithm is O�n�δn + m��. For 

directed graph with real edge weights, if the queue is 

implemented simply as an array, then δ B O�n�and the 

time complexity of the algorithm is  O�n� + nm� B
O�n��. If the queue is implemented with a Fibonacci 

heap, then δ B O�logn� and the time complexity of the 

algorithm is O�n
 log n + nm� .For an unweighted 

undirected graph, δ B O�1� and the time complexity of 

the algorithm is O�n
 + nm� B O�nm� 

 

Optimization for Complex Networks:  

Since few nodes in a complex network have large 

number of neighbors(neighboring nodes), it is very 

possible for these nodes to be in the middle of shortest 

paths of other nodes. If the shortest paths from these 

high-degree nodes are obtained in advance, then the 

visiting of other nodes covered by them can be saved in 

the modified Dijkstra’s procedure. Therefore, the order 

of vertices to be selected as sources is important for the 

algorithm performance in the context of complex 

networks.  
 

To determine the order of vertices as sources, one can 

simply sort the vertices by their degrees. For example, 

one can sort vertices in descending order and select 

vertices with high degrees as sources before vertices 

with low degrees. 

 

Because a large number of vertices in a complex 

network have low degrees, one need not determine the 

order for all vertices so that the time complexity of the 

selection process can be reduced. For example, one can 

use a ratio parameter r (0 < r < 1) to control the selection 

process. If nr nodes have been selected, then the 

selection process can be stopped and the vertices which 

have not been selected will be used as sources in a 

random order. 

 

Based on the above ideas, the authors [3] proposed an 

optimized algorithm for the APSP problem. The 

following data structures are added: 

 

• deg: the vector containing the degrees of 

vertices. deg[i] is the degree of the i-th vertex;  

• order: the vector containing the indices of 

vertices to be used as sources. order[i] is the 

index of i-th source vertex. 

 

The optimized algorithm is illustrated by Algorithm 

2 

 
Algorithm 2: Optimized Algorithm for the APSP Problem 

Input: Graph G = (V, E), weight matrix L, ratio r 

Output: distance matrix D 

1.    for each vertex v ϵ V do 

 Flag[v]=0 

2.    for each vertex pair (u, v) do 

 D[u, v]= ∞ 

3.    for i = 1 to n do 

 Calculate the degree of the i-th vertex    

4.    for i = 1 to n do  

 order[i] = i 

5.    for i = 1 to rn do 

 5.1    for j = i + 1 to n do 

  If deg[order[ j]] > deg[order[i]] then 

   swap(order[ j], order[i]) 

6.    for i = 1 to n do 

 call the modified Dijkstra’s procedure using the source of 

index order[i] 

 

 

Step 3 is used to calculate degrees of all vertices and 

vertices are selected according to their degrees in steps 
4-5. The swap(a, b) operation swaps the values of two 

variables a and b. 

 

Calculating degrees of all vertices requires O�m� time. 

The selection procedure has the time complexity of 
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O�rn
�.  Thus, the newly-added steps have the time 

complexity of O�m + rn
�.[3] 

 

Adaptive Optimization Algorithm:  

 

An interesting fact is that there is heuristics information 

in the modified Dijkstra’s procedure and that 

information can be utilized to help selecting sources. In 

step 3.3 of the modified Dijkstra’s procedure, if the 

condition is true, then the shortest path from source s to 

a vertex v may traverse the edge (t, v) temporarily. It 

hints that the vertex t is a possible intermediate vertex on 

some shortest paths. If the vertex t is used as predecessor 

more frequently, it will be possible for it to cover more 

vertices. Thus, it should be used as source in advance. 

Based on the observations, the authors [3] proposed an 

improved algorithm which can select sources adaptively. 

For a vertex t, they use the variable deg[t] to store its 

priority to be selected as the source. The variable deg[t] 

is initially set to the degree of t, and later updated in the 

modified Dijkstra’s procedure. If the condition in step 
3.3 of the modified Dijkstra’s procedure is true then  

 

deg�t� B deg�t� + c                (1) 

 

where c is a predefined constant, e.g., c = 1. Other steps 

in the modified Dijkstra’s procedure are not changed. 

The main procedure is stated in Algorithm 3. Since the 

vector deg changes in the modified Dijkstra’s procedure, 

the algorithm will select vertices as sources adaptively. 

 
 

Algorithm 3: Adaptive Algorithm for the APSP Problem 

Input: Graph G = (V, E), weight matrix L 

Output: distance matrix D 

1.    for each vertex v ϵ V do 

 Flag[v]=0 

2.    for each vertex pair (u, v) do 

 D[u, v]= ∞ 

3.    for i = 1 to n do 

 Calculate the degree of the i-th vertex    

4.    for i = 1 to n do  

 order[i] = i 

5.    for i = 1 to n do 

 5.1    for j = i + 1 to n do 

  If deg[order[ j]] > deg[order[i]] then 

   swap(order[ j], order[i]) 

  end if 

 end for 

6.    call the modified Dijkstra’s procedure using the source of index 

order[i] 

 

Calculating degrees of all vertices requires O�m� time. 

The selection procedure in steps 5 has the time 

complexity of O�n�Thus; the algorithm 3 has the same 

time complexity than the algorithm 1. 

 

 

 

3. Experimental Results and Comparison 

3.1 For algorithm technique in section 2.1  

The main idea of the algorithm [1] is to exploit the long 
paths property, maintaining dynamically only shortest 

paths of (weighted) length up to !C log n with the data 

structure, and stitching together these paths to update 

longer paths using any static O�n�� all pairs shortest 

paths algorithm on a contraction with O�!nC log n� 

vertices of the original graph. 

 

The stitching algorithm is dominated by the last step, 

which takes timeO�n
|S|� B O�n
�n log n d⁄ �#. Shortest 

path trees of length up to d can be maintained in O�n
d� 

amortized time. Choosing d B Θ�!nC log n#  yields an 

amortized update bound of O�n
. !C  log n#. 

3.2 For algorithm technique in section 2.2  

In this algorithm [2] the authors conducted extensive 

experimental studies to compare algorithm TDSSP with 

TDSP08, the most efficient discrete-time algorithm�17�. 
TDSP08 focuses on finding optimal answers for the TDSP 

problem using a continuous-time approach.  

 

 
Table 1: TDSSP runtime (s) for instances with different upper bounds of 
danger factor and different distance between source node and 

destination node, on a graph with 33 nodes and 100 edges. 

 
Initially, it computes the earliest arrival-time function 

gE�t� for each node  vE . Then it checks whether there 

exists a vC F vD path by calculating the best starting 

time t∗. After that, it generates a path P* corresponding 

to the arrival time gD�t∗� for the best starting time t∗ . 

Finally, it returns the path P* together with the best 

starting time. TDSP08 is able to deal with FIFO time-

dependent graphs, as well as the general time-dependent 

graphs, with arbitrary edge-delay functions. 

 
The two algorithm are implemented using C++, on a 

3.0GHz CPU/1G memory PC running XP. They test the 

two algorithms on a real data set with 16326 nodes and 

26528 edges, representing the road-map in the Maryland 

State in US. The nodes represent the starts, ends, and 

intersections of roads, while the edges represent road 

segments. 

 

The continuous piecewise-linear danger-factor functions 
?dE,_�t�[ are generated randomly in the following 

manner. They set four parameters: the average value of 

the danger factors (denoted as d�), the range of the danger 
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factor (denoted as d�), the length of the domain (denoted 

as  Lc ), and the number of the segments  Nc . In the 

domain T = [0, LT], T is randomly divided into Nc sub-

intervals. In each sub-interval, dE,_�t� is set to a linear 

function. The value of dE,_�t� at the start/end of each 

subinterval is randomly generated as a number in [d�−d� , 
 d�+d�] uniformly, where d�  is the average value of danger 

factor on the edge. The continuous piecewise-linear 

edge-delay functions ?wE_�t�[ are generated randomly. 

 Note that, TDSSP generates the same solution as TDSP08 

when Ω = 1.0.  

 

They collect data on a sub-graph of the road-map. The 
running time and memory dissipation of the algorithms 

are shown in figures 2 and 3 [2], respectively; for 

different upper bounds of danger factor that vary from 

0.15 to 1.00. 

 

In figure 2 [2], the running time of TDSP08 is 2.06 

seconds, as TDSP08 is independent of the danger factor. 

The algorithm TDSSP, however, is not. TDSSP is superior 

for the case of the danger factor less than 0.5. 

 

 
Figure 2: Running time of algorithms TDSSP and TDSP08 for different 

danger factors, on a graph with 33 nodes and 100 edges. 
 

For example, the running time of TDSSP is about 3 

seconds for Ω = 0.25, that is very close to the running 

time of TDSP08. The running time gradually increases to  

 
Figure 3: Memory dissipations of TDSSP for different danger factors, on 

a sub-graph with 205 nodes and 1000 edges. 
 

20 seconds when Ω increases to 0.5. From that, TDSSP 

becomes relatively slow with the increasing boundary of 

danger factor. This is because, there are more edges 

becoming safe in the graph, with the increasing of the 

boundary of danger factor. In this case, the algorithm 

TDSSP has to take more processing time to calculate the 

earliest arrival time functions for all nodes to select the 

shortest safe path. 

 

 On the other hand, the running time of TDSSP increases 

with the increasing distance between the source node 

and the destination node. It is not difficult to understand 

that, the far between the source node and the destination 

node, the more calculations are required. But this 

increase in running time is valuable as they can find a 

path that is both shortest and safe. In addition, these 

increases in running time is acceptable for relatively 

smaller distance values and smaller upper bounds of 
danger factor, in comparison to the running time of 

TDSP08 shown in figure 2 [2], that is about 2 seconds. 

They also collect the memory dissipations for both 

algorithms on the graph with different sizes, for different 

upper bounds of the danger factor. Figure 3 [2] show the 

simulation results on a relatively larger sub-graph that 

consists of 205 nodes and 1000 edges. From figure 3, 

they concluded that the corresponding memory 

dissipation has the similar changes as the running time. 

They also confirm that similar results are also true for 

other sub-graphs with different sizes, according to our 
extra experimental results. [2] 

3.3 For algorithm technique in section 2.3 

The newly-added steps do not change the upper bound 

on the time complexity of the algorithm. The proposed 

algorithm [3] has the same time complexity than the 

Dijkstra’s algorithm. Assume the time complexity of 

operations on the min-priority queue is δ, then the time 

complexity of proposed algorithm is O�n�δn + m��. For 

directed graph with real edge weights, if the queue is 

implemented simply as an array, then δ B O�n� and the 

time complexity of the algorithm is O�n� + nm� B
O�n��. If the queue is implemented with a Fibonacci 

heap, then δ B O�log n� and the time complexity of the 

algorithm is O�n
 log n + nm�. For an unweighted and 

undirected graph δ B O�1� and the time complexity of 

the algorithm is O�n
 + nm� B O�nm�. 

 
Introduction of Experiments: 

 

The authors [3] evaluate the performance of the 

proposed algorithms on random networks. They 

compare their performance in complex networks with 

the Erd� os and Rényi (ER) �18� random graph model and 

the scale-free Albert-Barab á si (AB) �19� network 
model. 

 

In the ER model, each vertex pair is uniformly 

connected with a probability p in a network of n nodes. 
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There are about pn�n F 1� 2⁄  edges in an ER graph. The 

average degree of vertices is 〈k〉 B p�n F 1� ≈ pn. The 

degrees of vertices can be represented by the Poission 

distribution. 

 

The AB model is an extension of the original Barabási -

Albert (BA) model. In the model, a network initially 

contains m0 nodes. Then the network grows using the 

following operations�19�: 
 

1. With probability p, add m new edges. For each 

edge, one of its end-points is selected randomly 

from the existing nodes. Another end-point is 

selected with probability 

 

π�kE� B ����
∑ �¡¡ ��

                            (2) 

where kE  is the degree of the i-th node; 

 
2. With probability q, rewire m edges selected 

randomly in the network. For each edge, one of 

its end-points is changed to another node which 
is selected with a probability given by the 

Equation (2); 

3. With probability  1 F p F q , add a new node 

and m new edges connecting the new node to 

other existing nodes. Another end-point of each 

new edge is also selected with a probability 

given by the Equation (2). 
 

Table 2: Parameter Settings in Experiments 

 
Depending on the model parameter values, the AB 

model can not only generate networks with power-law 

degree distributions, but also networks with exponential 

degree distributions. When q < 0.5 then networks with 

power-law degree distributions will be generated. The 

model parameter values used in their experiments are 

given in Table 2 [3]. 

 

The algorithms to be compared include the classic 

Dijkstra’s algorithm which is called iteratively using 

every vertex as source, algorithm 1, algorithm 2 and 
algorithm 3 [3]. 

 

For each parameter setting, they [3] randomly generate 

50 network instances and run the algorithms on them. 

Then, the running time is averaged on all instances. 

The test platform is a laptop with Intel Core i7-2640M 

CPU and 4GB memory, running Fedora 16 (Linux core 

3.1.0-7) operating system. 

 

 

Effects of Algorithm Parameters: 

 

 
(a) ER model 

 
(b) AB model 

Figure 4: Effects of parameter r 

 

The Authors [3] test the performance of algorithms on 

different algorithm parameter values. The node number 

is set to 1000 for the ER model and 3000 for the AB 
model. 

 

With different values of parameter r, the performance of 

algorithm 2 is demonstrated in Figure 4 [3]. It is shown 

that the average running time slightly increases with the 

increasing of r in cases of ER model. It seems that the 

optimization strategy is not useful in random networks 

of the ER model. In scale-free networks of the AB 

model, however, the average running time decreases 

with increasing of r. The average running time does not 

change significantly when r > 0.3. Thus, they can use a 

small value of r in algorithm 2 to improve the algorithm 

performance in scale-free networks. 

 

The performance of algorithm 3 with different values of 

parameter c is demonstrated in Figure 5. The average 

running time does not change much in most cases. 

Therefore, they can assume that the value of c has little 

impact on the performance of the algorithm 3. [3] 
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(a) ER model 

 
(b) AB model 

      Figure 5: Effects of parameter c 
 

Comparison of Algorithm Performance: 

 

The Authors [3] compare the performance of the classic 

Dijkstra’s algorithm and the algorithm 1 on random 

networks of ER model and AB model. 

 

 
Table 3: Coefficients on Cases of ER Model 

 

From Figure 6a, [3] they show that the average running 

time increases with the increasing of node number. The 

algorithm 1 outperforms than the Dijkstra’s algorithm in 

random networks of ER model with different link 

probability. Both algorithms have the same level of time 

complexity which is O�n��, but with different factors.  
Let the time complexity of Dijkstra’s algorithm be 

O�a�n�� and the time complexity of algorithm 1 

be O�a�n��.  
 

Using polynomial regression method, they obtain the 

values of a� and a� in each case. The results are shown 
in Table 3. From the table, one can see that the 

coefficient ratio �a� a�⁄ � increases with the increasing of 

probability p.  

(a) ER model 

 
(b) AB model 

Figure 6: Comparison with Dijkstra’s Algorithm 

 

When p = 0.8, the average running time of the algorithm 

1 is about 85% of the time of the Dijkstra’s algorithm. 

When p drops down to 0.2, the algorithm 1 takes only 

about 22% running time of the Dijkstra’s algorithm. 

Thereby, our algorithm is very efficient in cases of 
sparse random networks. 

 

Figure 6b [3], shows the log-log curve of the average 

running time in scale-free networks of AB model. 

Interestingly, they find that the performance of 

algorithm 1 is significantly better than the performance 

of the Dijkstra’s algorithm. The time complexity of 

algorithm 1 is even reduced in scale-free networks. From 

figure 6b, they show that the average running time 

follows the paw-law distribution for both algorithms. 

Denote the average running time by y and the node 
number by n. The relationship between them can be 

expressed by: 

 

 log�y� B b� + b� log�n�                                          (3) 

 

where b� and b�  are coefficients. 

 The values of b� and b�  are calculated using the linear 

regression method and the results are shown in Table 4. 

It is shown that the time complexity of Dijkstra’s 



IJCSN International Journal of Computer Science and Network, Volume 2, Issue 6, December 2013           
ISSN    (Online): 2277-5420       www.IJCSN.org 

194 

 

 

 

algorithm is still O�n��, but the time complexity of 

Algorithm 1 is reduced to about O�n
.¥�. 
 

The performance of three proposed algorithms [3] is 

compared at last. The results are shown in Figure 7 [3]. 

It can be observed that the average running time of 

algorithm 2 [3] is slightly higher than the other two 

algorithms in cases of ER model, while the performance 

of algorithm 3 [3] is comparable to that of algorithm 1 

[3]. 
 

 
(a) ER model 

 

 
(b) AB model 

Figure 7: Comparison of Proposed Algorithms 

 

However, in cases of AB model, the average running 

time of algorithm 2 and the time of algorithm 3 are 

lower than the time of algorithm 1 when p is low.  
 

Table 4: Coefficients on Cases of AB Model 

When p is high, the performance of algorithm 2 is 

comparable to the performance of algorithm 1 while the 

performance of algorithm 3 is slightly better than the 

other two algorithms. [3] 

 

4. Conclusions and Open Problems 

Identifying optimal paths in dynamic networks is a non-

trivial problem. The applications, computations, 

processes, data etc. migrate from blade servers to 

handheld computational devices and vice-versa which 

belongs to a dynamic network demand for runtime 

optimal path detections. 

 

Throughout the paper we attempted to present all the 
algorithmic techniques within a unified framework by 

abstracting the algebraic and combinatorial properties 

and the data-structural tools that lie at their foundations. 

 

Simulation results on real-world graph of Maryland 

State in US show that the running time and memory 

dissipation are acceptable on relatively small network, 

and also on enquiry of safe path between a pair of nodes 

with relatively short distance. The time complexity is 

only about O�n
.¥� when algorithm 3 is applied in scale-
free networks generated by the AB model. The 

algorithm performance is slightly improved with the 

optimization strategies in scale-free networks. 
 

Recent work has raised some new and perhaps intriguing 

questions. First, can we reduce the space usage for 

dynamic shortest paths to O�n
�? Second, and perhaps 
more important, can we solve efficiently fully dynamic 

single-source reachability and shortest paths on general 

graphs? Lastly, are there any general techniques for 

making increase-only algorithms fully dynamic, remains 

unanswered. 

 

Potential Application Areas: 

 

Identifying Optimal Path is a broadly useful problem-
solving model for: 

 

• Maps  

• Robot navigation. 

• Texture mapping.  

• Typesetting in TeX. 

• Urban traffic planning. 

• Optimal pipelining of VLSI chip. 

•  Subroutine in advanced algorithms. 

• Telemarketer operator scheduling.  

• Routing of telecommunications messages. 

• Approximating piecewise linear functions. 

•  Network routing protocols (OSPF, BGP, and 

RIP). 

• Exploiting arbitrage opportunities in currency 

exchange. 

• Optimal truck routing through given traffic 

congestion pattern. 
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