
IJCSN International Journal of Computer Science and Network, Volume 4, Issue 5, October 2015
ISSN (Online) : 2277-5420 www.IJCSN.org

Impact Factor: 0.417

718

Altered RELAN Algorithm to Display a Minimum
of One Suffix and One Stem of Gujarati Language

in Booting Screen at Booting Process in Linux
based Mobile Operating System

1 Milan Bhatt, 2 Prashant Dolia

 1 Mahadev Desai Grameva Mahavidyalay, Gujarat Vidyapith

Sadra, Guajrat 382320, India

2 Department of Computer Science, Maharaja Krishnakumarsinhji Bhavnagar University

Bhavnagar, Gujarat 364002, India

Abstract - There is a no any display a Gujarati language

character to booting screen in Linux based hand held

devices, So Information technology to display a minimum of

one suffix and one stem of Gujarati language in booting

screen at booting process in Linux based mobile operating

system. A immense cultural transition and transformation is

taking place today in the way of Gujarati regional people,

how to access, learn, and interact with information looking

booting process in regional language to easy to

understanding a star up information. Without doubt, has

enormous power to improve how village people live and

work using mobile.

Keywords - Gujarati Language, Regional Language, Booting

Screen, Suffix, Stem, RELAN, Linux Mobile.

1. Introduction

At the starting of the configuration of a new mobile

devices, mobile operating system's gives the message to

the user in English language. So, ruler area people or

specific domain regional language people can’t

understand English language and may not be understand

the different messages properly at starting of mobile at

first time which is given by the mobile operating system.

Most all the people are working with the mobile

technology in different way, domain peoples are uses the

different mobile with specific operating system like

Android, Windows, Asha, and Blackberry etc. But now a

days almost booting process of operating systems in

English Language. So new proposed booting process and

its component and its process (different messages) gives

in regional language.

2. Language Processing

We refer to the collection of language processor

components engaged in analyzing a source program as the

analysis phase of the language processor. Components

engaged in synthesizing a target program constitute the

synthesis phase.

Language Processing = Analysis of Source Programme +

Synthesis of Target Programme.

Lexical analysis builds a descriptor, called a token, for

each lexical unit. A token contain two fields—class code,

and number in class, class code identifies the class to

which a lexical unit belongs, number in class is the entry

number of the lexical unit in the relevant table.

Syntax analysis processes the string of tokens built by

lexical analysis to determine the statement class, e.g.

assignment statement, if statement, etc.

Semantic analysis adds information a table or adds an

action to the sequence. It then modifies the IC to enable

further semantic analysis. The analysis ends when the tree

has been completely processed.

IJCSN International Journal of Computer Science and Network, Volume 4, Issue 5, October 2015
ISSN (Online) : 2277-5420 www.IJCSN.org

Impact Factor: 0.417

719

3. Booting Process with Language Processor

Transferring the booting process of mobile devices

English language to regional language booting process

need some language processor for representation of an

algorithm in a source language to and produces as output

of target regional language. With the used of Assembler,

Compilers, Pre-processor, Interpreters and Disassembler.

4. Proposed Structure of RELAN

Fig. 1 Conceptual Structure of Language Processing

5. Morphology with Gujarati

Gujarati language has three genders (masculine, neuter

rand feminine), two numbers (singular and plural) and

three cases (nominative, oblique/vocative and locative) for

nouns. The gender of a noun is determined either by its

meaning or by its termination. The nouns get inflected on

the basis of the word ending, number and case. The

Gujarati adjectives are of two types – declinable and

indeclinable. The declinable adjectives have the

termination –ũ in neuter absolute.

The masculine absolute of these adjectives ends in -o

(◌◌ો) and the feminine absolute in -ī (◌◌ો). For example,

the adjective (mārũ - good) takes the form મા� (mārũ),

મારો (māro) and માર� (mārī) when used for a neuter,

masculine and feminine object respectively.

These adjectives agree with the noun they qualify in

gender, number and case. The adjectives that do not end

in -ũ in neuter absolute singular are classified as

indeclinable and remain unaltered when affixed to a

noun.
Table 1: Gujarati Moprhology

Gender Singular () Plural ()

Masculine (taar + o) or (tāro) (taa + i) or (tārā)

Feminine (taar + i) or (tārī) (taar + i) or (tārī)

Neuter (taar + uN) or
(tārũ) (taar + āN) or (tārã)

6. Altered RELAN

Step 1: Generate an object of obtain the optimal split

position for each only two stem and only one suffix

Gujarati word in the word list provided for training face

data input stream and buffer_reader classes respectively

''data_input_stream', 'buff_read'.

File_writer guj_char = newFile_writer(“/usr/src/linux-

source 2.6.8/kernel/guj_char.c”);

{ stem1 + suffix1, stem2 + suffix2, stem3 +

suffix3, , steml + suffixl }

guj_char -> guj_word [2] [N] array // separating character

from text

STEP 2: Repeat Step 1 until the optimal split positions of

all the words remain unchanged.

Loop { f(i) = i * log (freq(stemi)) + (L – i) * log

(freq(suffixi)) } // i : Split position (Varies from 1 to L)

and L : Length of the Word

STEP 3: Generate signatures using the stems and suffixes

generated from the training phase.

1St Loop { // To get every character from string [f(i)]

 2nd Loop { // To get suffix from the string [f(i)]

 } // 2nd Loop

} // 1st Loop

STEP 4: Discard the signatures which contain either only

one stem or only one suffix.

class buff_read closed

 char stem; char suffix;

write to “guj_char.c ”;

IJCSN International Journal of Computer Science and Network, Volume 4, Issue 5, October 2015
ISSN (Online) : 2277-5420 www.IJCSN.org

Impact Factor: 0.417

720

 if (guj_char==”stem”);

 write to “guj_char.c ”

 else if (guj_char==”suffix”);

 write to “guj_char.c ”

 close();

During the RELAN phase, I try to obtain the optimal split

position for each word present in the Gujarati word list

provided for training. I obtain the optimal split for only

one word and only two suffixes by taking all possible

splits of the word and choosing the split which maximizes

the function given in equation as the optimal split position.

The suffix corresponding to the optimal split position is

verified against the list of 59 Gujarati suffixes created by

me. If it cannot be generated by agglutination of the hand

crafted suffixes, then the length of the word is chosen as

the optimal split position. i.e. the entire word is treated as

a stem with no suffix.

{ stem1 + suffix1, stem2 + suffix2, stem3 +

suffix3,………. stemL + suffixL }

મા� ૃ= { મા + �,ૃ મ + ◌ા + ત + ◌ૃ, મા� ૃ+ NULL }

ગતા = { ગ + તા, ગ + ત + ◌ા, ગતા + NULL }

7. Applying RELAN

The bootloader is the first software program that runs

when a computer starts. It is responsible for loading and

transferring control to the Linux kernel. The grub.conf

file is available in /boot/grub/grub.conf. Also the

/boot/grub/grub.conf file can also be referenced via the

symbolic link file named /etc/grub.conf. In this boot

loader the default font is unicode.pf2. Now set the

Gujarati fonts in the boot loader your first check the

Unicode of Gujarati fonts. Gujarati Lohit font’s Unicode

number is set within 0A80 – 0AFF. There are 128

different character and suffixes.

Fig. 2 Gujarati Unicode

In this step you can create a new system calls in under

kernel.h file and this file is available in

/usr/src/linuxsource—2.6.8/kernel/<file_name>.c

Now generate the simple Gujarati character with the

kernel file and linkage with the <file_name>.c with

kernel.h

<file_name>.c = guj_char.c

#include <linux/stdio.h>

#include <linux/linkage.h>

#include <linux/kernel.h>

#include <asm/uaccess.h>

#include <asm/locale.h>

#define MAX_BUF_SIZE 4

asmlinkage int sys_guj_char(char _ _ usr *buff, int len){

char tmp[MAX_BUF_SIZE]; // tmp buffer to copy user's

string into

int guj_stem_len; // find how many stems in a string

int guj_suffix_len; // find how many suffixes in a string

a:

IJCSN International Journal of Computer Science and Network, Volume 4, Issue 5, October 2015
ISSN (Online) : 2277-5420 www.IJCSN.org

Impact Factor: 0.417

721

 if (guj_char==”stem”); then

 write to “guj_char.c ”

 elif (guj_char==”suffix”); then

 write to “guj_char.c ”

 close(); fi

File_writer guj_char = new File_writer(“/usr/src/linux-

source—2.6.8/kernel/guj_char.c”;

Buffer_writer guj_char = new buffer_writer(guj_char);

class buff_read closed

// Now Apply RELAN algorithm

char suffix;

char stem;

guj_char = { stem1 + suffix1, stem2 + suffix2, stem3 +

suffix3, , steml + suffixl } ;

guj_char -> guj_word [2] [N] array;

guj_char = i * log (freq(stemi)) + (L – i) * log

(freq(suffixi));

printk(KERN_EMERG “Entering guj_char(). The len

is %d\n”, len);

char guj_char_list;

if (len <= 2 || (len > MAX_BUF_SIZE)); then

printk((KERN_EMERG “Entering guj_char() failed:

illegal len (%d) !”, len);

 return (-1);

 return a; fi

// copy buff from user space into a kernel buffer

if (copy_from_user(tmp, buff, len); then

printk(KERN_EMERG “Entering guj_char() fail:

copy_from_user() error”);

 return (-1);

 return a; fi

tmp[len] = '\0';

printk(KERN_EMERG “ guj_char() from %s. \n”, tmp);

if (!setlocale(LC_CTYPE, "")) {

 fprintf(stderr, "Can't set the specified locale! " "Check

LANG, LC_CTYPE, LC_ALL.\n");

 return 1 }

 printf("%ls\n", L "Bhatru – ascii(0AC3) ");

 return 0;

return (0);

close()

}

Now this guj_char file linkage with the modified

grub.conf file as name is modgrub.conf.

The changes will come into effect right after we run 'sudo

grub-mkconfig -o /boot/grub/grub.cfg' to write the new

modgrub.cfg file.

Manually re-load gfxterm

update-grub generates a grub.cfg that thinks grub can

see the SD card reader

(where "/" lives) at boot time to get the font for gfxterm

from /usr/share/...

So we do manually here what update-grub fails to do

automatically in grub.cfg

insmod part_msdos

insmod ntfs

set root='(hd0,msdos2)'

if loadfont /linux_boot/grub/fonts/Lohit-Gujarati.ttf ; then

set locale_dir=($root)/linux_boot/grub/locale

set lang=en_US

set gfxmode=1600x768x16

set gfxterm_font=Lohit-Gujarati.ttf

load_video

insmod gfxterm

insmod gettext

insmod png

terminal_output gfxterm

background_image /linux_boot/grub/MIDO.png

fi

Now grub2 copy Lohit-Gujarati to /boot/grub/fonts.

As long as that's there, then all you need to do is one time

run this:

grub-editenv - set feature_default_font_path=y

Now update-grub still produces a grub.cfg that points to

/usr/share , but now this part gets invoked instead of the

part that tries to use the unreachable path:

if [x$feature_default_font_path = xy] ; then

 font=Lohit-Gujarati.ttf

else

There does seem to be an undocumented variable

GRUB_FONT that you can put in /etc/default/grub

root@mido:~# update-grub

Now reboot the computer and check the maximum two

Gujarati characters and maximum two suffixes are display

in the booting process.

IJCSN International Journal of Computer Science and Network, Volume 4, Issue 5, October 2015
ISSN (Online) : 2277-5420 www.IJCSN.org

Impact Factor: 0.417

722

So during my this research paper, I try to solve Specific

domain people can understand at the start up (booting

process) the Nokia N900 Linux mobile in regional

language. Using this entire work based on Linux

operating system and MAEMO operating system which is

based on Debian series as well as kernel programming.

During this work I have made RELAN Algorithm and

apply to the Nokia N900 mobile device and work properly

and mobile phone was hang up. Then required to

modified RELAN algorithm and some changes in

guj_char.c file.

8. Display a Gujarati Character

Fig. 3 Gujarati Character

9. Conclusion

A immense cultural transition and transformation is

taking place today in the way of Gujarati regional people,

how to understand, access, learn, and interact with

information looking booting process in Gujarati language

for the Linux based mobile Operating System.

References

[1] Milan S., Prashant M., “A Proposed to Display any

One Character of Regional Language for Booting

Screen of Linux Based Mobile Operating System

Using RELAN Algorithm”, International Journal of

Computer Science and Technology [IJCST], IJCST

Vol. 6, Issue 2, April - June 2015, pp: 314-317

[2] Milan S., Prashant M., “A Proposed RELAN

Algorithm for Booting Process in Regional Language

for Linux Based Mobile Operating System”, INDIAN

JOURNAL OF APPLIED RESEARCH, Vol. 5, No. 2,

2015, pp: 203-207

[3] Milan S., Prashant M., “Proposed Booting screen and

Architecture in regional language for Linux based

mobile devices”, International Journal of Computer

Applications, NCETICT 2013, pp.: 28-33

[4] Milan S., Prashant M., “Linux સચંા�લત Mobile માટ�

�જુરાતી ભાષા�ુ ં��ૂચત �થાપ�ય (Architecture) તથા

�જુરાતી ભાષામા ં ��ૂચત Desktop અને િવિવધ

Software.”Shabd Braham-International Research

Journal of Indian Languages, Vol. 1, No.9, pp.: 67-73

[5] Jin Zhou, Brian Demsky, “Memory Management for

Many-Core Processors with Software Configurable

Locality Policies”, International Symposium on

Memory Management, 2012.

[6] Vivek D., Vijay W., Helonde J., “Characterizing the

Memory Management for Improving the Performance

of Embedded system used in Wireless Sensor

Networks ”, IJCA Proceedings on International

Conference in Computational Intelligence, 2012.

[7] Raghavan S., Mooney, R. J., Ku. H, “Learning to read

between the lines using Bayesian Logic Programs”,

ACL 2012.

[8] Savvas G., Nicholas B., “Joint Transmitter Power

Control and Mobile Cache Management in Wireless

Computing”, IEEE Transactions on Mobile Computing,

Vol. 7, No. 4.

[9] Prasenjit M., Madar M., Swapan P., Gobinda K.,

Pabitra M., Kalyankumar D., "YASS: Yet another

suffix stripper", ACM Transactions on Information

Systems, Vol. 25, No. 4, pp 18-38, 2007.

[10] Dagan I., Greental I., and Shnarch E., “Semantic

inference at the lexical-syntactic level Bar-Haim”,

22nd AAAI Conference on Artificial Intelligence,

2007.

[11] Creutz, Mathis, Krista L., “Unsupervised models for

morpheme segmentation and morphology learning.

Association for Computing Machinery Transactions on

Speech and Language Processing”, 2007.

[12] John G., "An algorithm for unsupervised learning of

morphology", Natural Language Engineering, Vol. 12,

No. 4, pp 353-371, 2006.

[13] Amaresh P., Tanveer S., "An unsupervised Hindi

stemmer with heuristic improvements", 2nd Workshop

on Analytics for Noisy Unstructured Text Data, pp 99-

105.

Author Profile

Milan S. Bhatt received his B.Sc. degree in Industrial Chemistry
from Bhavnagar University, Bhavnagar, India, in 2002, the M.C.A
degree from Bhavnagar University, Bhavnagar, India, in 2005, and
the currently pursuing Ph.D. degree from Gujarat Technological
University, Ahmedabad. He was a teaching assistant, assistant
professor, in MCA and M.Sc. IT Department with SSCCS,
Bhavnagar, in 2006 to 2011 respectively. He was also teaching
assistant in BCA with IGNOU. His research interests include Kernel
Programming, Linux Operating System and Network with Windows
and Linux Operating System. Also published 6 books of related to
computer science and also published 6 research paper in national
and international peer review journals. At present, he is engaged
Programmer at MD Gramseva Mahavidyalay, Sadra –Gujarat
Vidyapith, Ahmedabad.

Prashant M. Dolia received his B.Sc. degree in Physics from
Bhavnagar University, Bhavnagar, India, the M.C.A degree from
Bhavnagar University, Bhavnagar, India, and the complete the Ph.D.
He was Project Officer, in MCA Department, Bhavnagar University,

IJCSN International Journal of Computer Science and Network, Volume 4, Issue 5, October 2015
ISSN (Online) : 2277-5420 www.IJCSN.org

Impact Factor: 0.417

723

Bhavnagar, in 1998 to 2000 respectively. He was lecturer in MCA
Department, Bhavnagar University, Bhavnagar. His research
interests include Web Intelligence, Data Mining & Warehousing,
Wireless Technology, Linux Platform & Kernel Programming. Also
published 9 books of related to computer science and also published
21 research paper in national and international peer review journals.
At present, he is engaged Associate Professor at Department of
Computer Science, Maharaja Krishnakumarsinhji Bhavnagar
University, Bhavnagar.

