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Abstract - As the data volumes are growing rapidly, most of the processing needs to be distributed to several 

machines. Whereas the data processing over the distributed machines accompanies a few difficulties such as 

parallelism, scalability, machine failures and large data sizes. To face these challenges, much work has been carried out 

in this Big data domain. As a result, an extensive list of processing models and its co-existent technologies has been 

proposed for distributed cluster computing. However, there is a lack of comprehensive and comparative study to 

evaluate and choose from the number of options available. While many distributed computing technologies have 

emerged recently it can also be tough to understand how these technologies are related. We comprehend and briefly 

discussed the underlined architecture of distributed computing for a better understanding of the relations among various 

Big data technologies. This work also surveys features, strengths, and limitations of existing processing models by 

comparing them. Most of the existing data processing models are generally specific to particular application domain. In 

this work, we are also supporting the generic processing model that works for a variety of workloads as well as new 

application domains. Few of the key characteristics mentioned here can potentially guide in making an educated 

decision about the right combination of distributed processing technologies.  
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1. Introduction 

 
e organized this work as a glance at one 

place for entire distributed processing 

ecosystem. By the end of this study, we will 

be introduced to Big Data processing 

vocabulary. Big data is complex in nature 

which demands powerful technologies, a variety of 

techniques and advanced algorithms. Data analytics 

requires complex procedural model which may involve 

batch processing, real-time processing, machine 

learning, graph processing or a mixture of them. For 

example, very low latency processing of data demands 

real-time applications. As per user preferences, Big 

data has to support declarative queries for its data 

processing. It needs support from the underlined 

cluster resource management methodology for better 

load balancing of physical machines. To speed up the 

execution it also demands the availability of advanced 

commodity hardware. 

The efficiency of distributed Big data processing over 

large clusters depends on many system dependent  

 

parameters such as data I/O performance, processing 

chipset architecture, availability of main memory,  

memory hierarchy optimization, commodity hardware 

cost. It also depends on application dependent 

parameters such as processing model design, type of 

workload supported, data size, fault tolerance, 

scalability. Especially on a large distributed system, 

latency and data locality plays a key role to deliver 

high-performance by taking processing to the data 

instead of moving the data around the cluster. 

Nevertheless it is the requirements which drive us to 

wisely choose between the key factors from the above-

listed parameters.  For example, one can compromise 

on the accuracy of the result to benefit from the speed 

of execution.  

Most of the engines can only solve a specific type of 

workloads such as graph processing or machine 

learning etc., they are not capable enough to handle the 

variety of processing requirements which is most likely 

in modern scenarios. In this survey, we touched few 

parameters and we grouped our analysis based on the 

vital parameter “type of workload supported”.  Some 

of the mentioned frameworks in this survey build on 

W 

http://www.ijcsn.org/
https://www.mapr.com/blog/data-processing-vocabulary-101-key-terms-you-need-know
https://www.mapr.com/blog/data-processing-vocabulary-101-key-terms-you-need-know


IJCSN - International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017           
ISSN (Online) : 2277-5420        
www.IJCSN.org 
Impact Factor: 1.5 

 

729 

 Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved. 
 

top of a general-purpose processing model which is 

independent of the type of workload. We always in 

need of a general-purpose processing framework which 

can save implementation effort and operational effort. 

There are several works that illustrates the below-

discussed technologies but to the best of our 

knowledge, there is no existing work which compares 

data processing models and also briefs the full-stack 

technology ecosystem of distributed computing.   

2. Distributed Computing Ecosystem - 

Architecture 

Distributed cluster computing over large data often 

requires well-designed architectures that typically 

includes a combination of tools and techniques for data 

collection, data storage, data processing, data analysis 

and rendering of data results in dashboards. A common 

data pipeline architecture begins with raw data 

ingestion, followed by ETL (Extract-Transform-Load) 

to a data store then the core data processing, followed 

by high-level abstractions and finally rendering of 

extracted data results in the user interface dashboards. 

In Fig 1, proposed layered full-stack technology 

architecture illustrates the interrelationships among the 

different layers of a large-scale distributed processing 

ecosystem.

 

Fig 1: Distributed Computing Models- Ecosystem –Architecture 

3. Cluster Resource Management 

Commodity hardware is being vastly used for modern 

day computing as it is cost-efficient. Distributed fault-

tolerant frameworks are designed to run on top of these 

commodity hardware clusters. It is the resource 

management layer that manages these large data 

clusters. It provides a resource-efficient platforms for 

executing the upper layer recommended jobs. Apache 

YARN [1] and Apache Mesos [2] are gained 

popularity as resource managers for distributed fault-

tolerant computing clusters.  

3.1 YARN 

From Hadoop [3] version v2.0, a resource management 

layer was introduced for efficient sharing of cluster 

resources. YARN (Yet Another Resource Negotiator) 

is a software rewrite that decouples resource 

management, scheduling techniques from the 

MapReduce [3] data processing component.  
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YARN architecture Design proposed and developed by 

Horton Works [4]. HDFS [3] combined with YARN, 

facilitates an ideal data platform and processing 

solutions for Apache Hadoop. YARN is optimized for 

scheduling Hadoop jobs faster. Its recent versions are 

designed to accommodate support multiple 

frameworks along with Hadoop. Its ResourceManager 

is known as the master daemon and NodeManager is 

known as the worker daemon. NodeManager has a 

number of dynamically created resource containers of 

different sizes. A short-lived version of MapReduce 

JobTracker known as ApplicationMaster.  

ResourceManager tracks the number of live nodes and 

resources available on the cluster and then arbitrates 

the available cluster resources. When a client submits 

an application, an instance of ApplicationMaster is 

started to coordinate all task’s execution within that 

application. Therefore, ApplicationMaster becomes 

responsible for monitoring tasks, restarting failed tasks 

etc. which were earlier handled by the single 

JobTracker in MapReduce framework.  

 

3.2 MESOS 

Few requirements may demand that multiple 

computational frameworks should run alongside other. 

Mesos was built to be a scalable global resource 

manager for the entire datacenter which typically 

supports different types of processing frameworks. 

Similar frameworks can intelligently co-exist, 

scheduled and run by Mesos on the same cluster. It is 

based on the concepts of Linux OS kernel, only at a 

different level of abstraction.   

 

Mesos Design proposed and developed by the 

University of California, Berkeley [5]. Mesos has a 

master process, set of slave processes which run on the 

cluster nodes. On the slave nodes, different 

computational frameworks are being deployed and 

individual tasks run on these. Mesos master process 

uses resource allocation policies and available free 

resources for allocating resources to the computational 

framework. The master process has the responsibility 

of resource sharing using “resource offers” to the 

frameworks. A framework rejects resource offers 

which do not meet requirements, can wait for the 

satisfied ones and Frameworks can also set filters 

based on preferences. Each of Mesos framework is 

expected to implement an application scheduler and an 

executor process.  Each framework can choose its 

algorithm for the scheduling of its jobs.   

 

3.3 Discussion 

Difference between Mesos and YARN is about their 

design priorities and how they approach scheduling 

jobs.  

3.3.1 Scope 

YARN was initially created out of the necessity to 

scale the Hadoop. YARN is best suitable for Hadoop 

environment. But its stable design has recently grown 

to accommodate heterogeneous frameworks too. 

Mesos initially designed as a general purpose 

scheduler for datacenter and cloud environments. 

3.3.2 Implementation 

YARN was written in Java, Its core uses lightweight 

UNIX processes, It has inbuilt support for processing 

frameworks. Mesos Written in C++, Its core uses 

Linux container groups. Mesos is lighter but demands 

more effort to customize it for processing framework. 

3.3.3 Architecture 

YARN architecture is based on the Remote Procedure 

Calls. Processing framework requests for a container 

with specifications and locality preferences, i.e 

Information passed here.  Mesos architecture based on 

the message passing. Processing framework gets 

resource offers to choose from, i.e Information 

received here. 

3.3.4. Decision Making 

YARN decides the suitable resources for a given job. 

Data locality efficiently handled by YARN and jobs 

are deployed faster. Whereas in Mesos, it is the 

framework that makes the decision for the best 

possible fit. 

3.3.5 Security 

YARN inherits the Hadoop security and it is not a 

concern here. For Mesos, we need to deal with the 

security additionally.  

3.3.6 Type of Work Load 

YARN suitable for long running batch jobs and 

stateless batch jobs which can restart easily. Whereas, 

Mesos supports variety workloads which may support 

non-Hadoop frameworks also. Both of them have 

improved the scalability issues in Hadoop clusters but 

their centralized ResouceManager is still a barrier for 

extreme scale scenarios of distributed systems. 

Nowadays every corporation is opting for distributed 

datacenters for disaster recovery and business 

continuity. Data depositary is also getting distributed 

across datacenters which leads to the high availability 

of applications and data access. This kind of data 

distribution also helps in load balancing and 

performance scalability. If the organization has 

http://www.ijcsn.org/
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multiple co-operating datacenters across the geography 

then the current resource management layer solutions 

Apache YARN and Mesos do not suffice. This 

limitation also triggers further research scope. Its 

centralized resource manager needs to address this 

kind of datacenters.  Apache Myriad [6] enables the 

co-existence of Apache Hadoop and Apache Mesos on 

the physical infrastructure which is undergoing 

incubation. 

4. Storage Systems 

Storage systems here are typically a combination of 

distributed file system and a database system. Most of 

the storage distributions are de-coupled into the 

standard distributed file system and database system. 

Few storage distributions have their own distributed 

file system tightly coupled with the database. 

Distributions that incorporate their own file systems 

provide more convenience and faster back-ups. Most 

of the time, the file system is paired with a non-

relational database in a Big data distributed computing.  

4.1 Distributed File Systems  

The distributed file system provides the basic storage 

infrastructure in the above architecture. Similar to 

shared file systems, distributed file system sources can 

range from NFS [7], S3 [8], or HDFS [9], where HDFS 

is more prominent for large clusters. 

4.1.1 HDFS - Hadoop Distributed File System 

 
HDFS (Hadoop Distributed File System) is an integral 

module of Apache Hadoop [10] environment. It forms 

the core components which builds the Hadoop 

Ecosystem. It provides scalable and reliable data 

storage, and it was designed to span large clusters over 

commodity hardware. It is a Java-based distributed file 

system which primarily provides high-throughput 

access to application data. HDFS designed as per 

Master/Slave architecture [10]. HDFS cluster contains 

NameNode, which is a Master server. NameNode 

manages the file system namespace and also provides 

the access control. HDFS cluster has many DataNodes 

which are responsible for storing the data blocks of 

files on their disks. For each and every file the 

NameNode tracks the block mapping to each 

DataNode. NameNode is made High- Available with 

its recent versions. HDFS cluster provides reliability, 

simple administration, and easy maintenance. 

4.1.2 NFS – Network File System 

NFS (Network File System): A protocol developed for 

which it allows clients to access files over the network. 

NFS clients access the data as if the files reside on the 

local machine, even though they reside on the disk of a 

networked machine. Its architecture is not highly 

sophisticated to cater the requirements of the 

production environment where reliability and High-

Availability are not be compromised.   

 

4.1.3 Amazon S3 

 
Amazon Simple Storage Service is storage for the 

Internet [11]. Amazon S3 is a kind of cloud storage 

which provides storage through web service interfaces 

such as REST, SOAP etc. Amazon S3 manages data 

with an object storage architecture. Its design aims to 

provide scalability, high availability, and low latency. 

Amazon S3 is not an open source, mostly it has 

commercial offerings.  

4.1.4 Discussion: 

NFS is a file system that is distributed amongst many 

networked machines whereas HDFS is fault tolerant as 

it stores multiple replicas of files. Since S3 is in a 

cloud-native architecture it provides elasticity, 

scalability, built-in persistence but it incurs additional 

licensing cost. With limited sizes to store, S3 has lower 

prices than HDFS data storage but traditionally HDFS 

commoditized for huge data sizes to store and 

distribute a large amount of data. 

 

4.2 NoSQL Databases 

Databases represent the way of modeling the raw data 

which is physically present in the underlined file 

system. Relational database management systems are 

strict in nature and generally handles structured data. 

These type of databases do not scale if used with very 

large datasets. Non-relational databases which are 

referred as NoSQL, those will be suitable for various 

workloads as they support structured, semi-structured, 

and unstructured data. Also, these NoSQL databases 

are scalable in nature. As we typically deal with large 

data sets, NoSQL databases emphasized further in this 

study. The decision to choose the database is primarily 

based on how the data being stored and retrieved. 

NoSQL Databases majorly use one of below briefly 

mentioned types of data models [12]. 

4.2.1 Column-oriented databases 

 
Data is stored in the form of columns rather than rows. 

However, by storing data in columns rather than rows, 

the database can more precisely access the data it 

needs to answer a query rather than scanning and 

discarding unwanted data in rows. Query performance 

is often increased as a result, particularly in very large 

data sets [13]. HBase [14] and Cassandra [15] are the 

http://www.ijcsn.org/
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examples of majorly discussed column-oriented 

databases. 

HBase is a non-relational column-oriented database 

management system which runs on top of HDFS in 

Hadoop environment. Hadoop MapReduce jobs can 

access the data stored in HBase tables. HBase is 

written in Java and has a Java Native API. Its Java API 

provides convenient base classes to the client for 

database operations. It supports sparse data sets, which 

are highly relevant in Big data domains.   

Cassandra [16] is also a distributed database system 

which design based on the Column Data Model. Linear 

scalability and proven fault-tolerance on commodity 

hardware without compromising the performance 

make it the right choice for mission-critical data. It 

additionally offers robust support for clusters spanning 

across multiple datacenters with asynchronous 

replication. This asynchronous replication has very low 

latency to sync the primary database with remote site 

database which is designed for the business continuity 

in case disaster at primary datacenter.  

4.2.2 Key-value databases 

 

Key-value databases [17] are less complex of the all 

models and its implementation is based on the most 

commonly used data structure, a hash table. Each data 

item in the hash table has a unique key referring to it. 

They are fast and highly scalable. Redis [18] and 

Memcached [19] are the examples of majorly 

discussed key-value stores. 

Redis [20] is an in-memory open-source database 

software project which implements a networked, in-

memory key-value store with optional durability. Redis 

supports different kinds of abstract data structures, 

such as strings, lists, maps, sets, hyper logs, bitmaps 

and spatial indexes. Redis was the most popular 

implementation of a key-value database according to 

DB-Engines Ranking [12]. 

Memcached is an open source, high-performance, 

distributed memory object caching system. It is 

intended to use in speeding up dynamic web 

applications by eliminating database load. Memcached 

is an in-memory key-value store for small chunks of 

arbitrary data triggered from results of database calls, 

API calls, or page rendering. Memcached is simple yet 

powerful and its design promotes quick deployment, 

ease of development, and solves many problems facing 

large data caches. Its API is available for the most of 

popular languages.  

4.2.3 Document databases 

 
These type of NoSQL databases can be interpreted as 

nested key-value stores. Here a key refers to a set of 

key-value stores rather than simply a value. MongoDB 

[21] and CouchDB [22] are the examples of majorly 

discussed Document stores. 

 

A MongoDB Document Data Model deployment hosts 

a number of databases. A database holds a set of 

collections. A collection holds a set of documents. A 

document is a set of key-value pairs. MongoDB can 

store data in JSON and gives us the rich features of an 

RDBMS such as indexes, dynamic queries, sorting, 

updates, and aggregation.It has flexibility and a scaling 

capability. 

  

CouchDB [23] Document Data Model is implemented 

in the concurrency-oriented language Erlang [24]. It 

uses JSON to store data, JavaScript to query over 

MapReduce, and HTTP protocol for an API. It is 

designed for creating modern applications over a 

database model that can provide high availability and 

scalability.  

 

4.2.4 Graph databases 

  
These NoSQL databases are optimized for graph 

structures. Graph databases are intended for data that 

can be designed as a graph and can be used for jobs 

such as network analysis. Neo4J [25] and Titan [26] 

are the examples of majorly discussed Graph 

databases. 

 

Neo4j[27] is a graph database management system 

developed by Neo Technology, Inc. A graph 

database targeted at very fast querying of huge graphs.  

Described by its developers as an ACID-compliant 

transactional database with native graph storage and 

processing.  

 

Titan is a scalable graph database optimized for storing 

and querying graphs containing hundreds of billions of 

vertices and edges distributed across a multi-machine 

cluster. It is a transactional database that can 

support thousands of concurrent 

users executing complex graph traversals in real time.  

5. Core Data Processing 

The data to be processed can come from different 

sources like a distributed file system, structured 

storage, and network data. Large-scale data processing 

frameworks are placed above the data storage layer. 

For most of the frameworks the data processing layer 

shipped with database capabilities. In those 
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frameworks data processing layer directly talk to the 

resource manager and underlined file system.   

5.1 HDD Computing  

In the earlier processing engines, the only way to share 

data between computations is to write it to an external 

persistent storage system such as distributed file 

system. This causes significant overheads because of 

data replication, disk I/O [28], and serialization which 

may dominate application execution. 

 

5.2 In-Memory Computing  
 

As cost of main memory declining it is allowing for 

computing systems to be equipped with a huge amount 

of RAM at a relatively low price. This also provides 

the scope of using main memory as a data store instead 

of only processing purpose.  Especially in a distributed 

computing environment if we combine space from all 

main memories then it will suffice to store and process 

the huge data sizes.  Most part of the database can be 

accommodated by main memory [29], rest will spill 

out to disk. Disk I/O is the primary bottleneck in 

processing the data which is stored on the disk. In a 

distributed cluster computing setup if the network 

latency time is less than the disk I/O then In-memory 

computing un-doubtfully yields better results.  While 

running In-Memory computations, to speed up the 

execution we can use buffers through which we can 

achieve near zero network latency. 

 

This kind processing shift from disk to main memory 

also includes few challenges to address. The columnar 

data store in main memory does not natively support 

OLTP so we need hybrid storage model if OLTP also 

considered. Underlined processing engine should 

distribute the computation steps efficiently over the 

large cluster, i.e synchronization barrier should happen 

at main memory level.   To make in-memory 

computing efficient we need to implement concurrency 

control using lightweight locking and hardware 

transactional memory. While reading data from the 

filesystem databases generates indexes for high-speed 

lookups.  Databases in HDD are designed using B+ 

tree indexing in the view of disk I/O but databases in 

main memory focus on key value pair which can will 

perform better over fast tree-based indexing [30]. 

However, few issues like fault-tolerance and 

consistency are more difficult to handle with in-

memory systems. 

 

5.3 Generic Analysis of Models 
 

MPI (Message Passing Interface) [31] is one of the 

oldest distributed computing models. MPI design is 

based on the peer-to-peer networking and master-slave 

paradigm. Peer-to-peer networks are used to 

communicate and exchange the data between nodes 

using broadcasting messages. But in peer-to-peer 

networks data shuffling between nodes is much more 

expensive [32]. One of its primary drawbacks is the 

fault intolerance as MPI has no mechanism to handle 

faults.  MPI is not being widely used anymore in high-

available large-scale cluster computing domain. 

 

Distributed cluster computing for large data consists of 

many open source software projects licensed under the 

Apache Software Foundation [33].  Apache Hadoop 

project initiated as a robust framework which provides 

distributed computing ability. Hadoop first shipped 

with four core modules such as HDFS (Hadoop 

Distributed File System), YARN (Resource Manager), 

MapReduce (Processing Engine) and Hadoop 

Common (Libraries and Utilities for others) from the 

Apache Software Foundation. Today, Hadoop and Big-

data stack has evolved to a stage where there are many 

processing frameworks are proposed based different 

type of workloads, application areas, and business 

scenarios. Few major models listed and studied in the 

due course of this survey.  

Despite the fact that many frameworks address the 

specific challenging issues in the cluster environment, 

they are also having several drawbacks like limited 

scope, work duplication, inefficient resource sharing 

and complex administration. These drawbacks are the 

prominent reasons why we always in need of solutions 

which are built on top of a general-purpose processing 

engine. We also listed and discussed various 

processing models in each type of workload by 

comparing with generic engines such as Apache Spark 

[34] and Apache Flink [35]. Spark is one of the most 

prominent general purpose computing abstractions 

which is currently available in distributed processing 

of Big data.  

5.4 Understanding Spark RDD 

Apache Spark is a fast and general-purpose cluster 

computing system which is built around the abstraction 

called Resilient Distributed Datasets (RDD) [36]. 

Spark has unified processing architecture supported by 

Resilient Distributed Datasets. Resilient Distributed 

Datasets (RDDs) are fault-tolerant, in-memory and 

parallel data structures which provide efficient data 

sharing across parallel computations. Formally, an 

RDD is a read-only, partitioned collection of records. 

RDDs can only be created through deterministic 

operations on either data in persistent storage or from 

other RDDs. Examples of transformations include 

map, filter, and join. These RDDs extend the 

programming model introduced by MapReduce. It can 

run batch, interactive, iterative and streaming 

computations at the same time and provides fault 

http://www.ijcsn.org/
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tolerance, scalability. Spark has an advanced DAG 

(Directed Acyclic Graph) execution model that 

supports in-memory processing. Lazy evaluation of 

RDDs helps for optimization of overall data processing 

work. Spark also provides an interactive shell and it 

has rich API for Scala, Java, and Python which are 

especially great for data science environment. 

RDDs let users to explicitly store data on disk or in 

memory, to control its partitioning, and to manipulate 

it using a rich set of operators. Spark RDD implements 

lineage-based fault tolerance with negligible overhead 

as well as optional dataset replication. Once a failure 

happens the lineage graph along with the input data 

can be used to reproduce the lost RDDs. Each RDD 

remembers the graph of operations used to build it. 

RDDs provide an interface which is based on coarse-

grained transformations that applies the same operation 

to many data elements. This permits them to provide 

fault tolerance by logging the operations used to build 

a dataset rather than the actual data. An RDD has 

enough information about how it was derived from 

other datasets. This will help to compute its partitions 

from data present in stable storage in case of the worst 

case scenario when all its preceded datasets are failed. 

This is a more efficient way of providing fault 

tolerance than duplicating the data over the network. 

From the memory perspective, the fundamental 

difference between RDDs and Distributed Shared 

Memory (DSM) [37] is that RDDs must be created 

through coarse-grained transformations, while DSM 

permits fine-grained reads and writes to each memory 

location. Besides, only lost partitions of an RDD need 

to be recomputed upon failure by parallel re-computing 

on different nodes, without having the checkpoints to 

roll back the whole changes. Further, RDDs are 

immutable in nature this lets a system predict slow 

nodes and resolve them by running backup copies of 

slow tasks. Spark RDDs runtime can also schedule 

tasks based on data locality to improve performance. 

5.5 Discussion: MapReduce, Spark, and Flink  

MapReduce [38] is a fundamental data processing 

engine used in the Hadoop environment. MapReduce 

design incorporates the Map function and the Reduce 

function which handles the data computations. It is 

parallel data processing framework for which 

traditionally been used to run the map and reduce jobs.  

Map function regroups the input data into independent 

key-value pair partitions. Then, the engine will send all 

the partitioned key-value pairs into the Mapper which 

processes each of them exclusively. These parallel 

mapper tasks are launched throughout the cluster. Then 

the Mapper outputs one or more intermediate key-

value pairs. For each unique key, the Reduce function 

aggregates the values associated with that key. The 

final output generated then is written back to HDFS.  

 

MapReduce is the most mature and it executes tasks 

where data is located. This reduces a significant 

network communication load between cluster nodes. 

MapReduce operations are not always optimized for 

I/O efficiency [39]. MapReduce is inefficient in 

running iterative algorithms and is not designed for 

iterative processes. Mappers read the same data again 

and again from the disk. Whereas, Spark was initially 

designed to run on top of Hadoop and it is an 

alternative to the traditional batch MapReduce model. 

Spark can also be used for the fast interactive, iterative 

queries and real-time streaming data processing. 

Spark stores data In-memory on the other hand 

MapReduce stores data on disk which incur additional 

network I/O latency. Hadoop MapReduce uses 

duplication of data on disk to accomplish fault 

tolerance whereas Spark uses a new storage abstraction 

called Resilient Distributed Datasets (RDD) to ensure 

fault tolerance. Spark uses more RAM and in case of 

data spill to disk, its disk I/O is relatively fast as 

compared to MapReduce. But as Spark demands a 

huge RAM it needs a dedicated high-end physical 

machine for its data processing. The amount of time 

and code required for writing a Spark job is 

significantly less than writing an equivalent 

MapReduce job. Executing Spark processes does 

not limit to only Hadoop YARN cluster. Spark has its 

own standalone cluster resource manager. Moreover, 

Spark can also run on Mesos clusters. 

Apache Flink [40] is an open-source stream processing 

framework for distributed, high-performing, 

and accurate data streaming applications.  Flink's 

pipelined runtime system enables the execution 

of batch and stream processing programs [41]. Flink 

designed as fault-tolerant and its core is written 

in Java and Scala. Flink also supports the execution 

of iterative algorithms natively [42]. Flink is among 

the young projects and currently proving in a 

production environment.  It has a growing group of 

committers and it does not offer stable solution 

libraries for graph processing and machine learning. 

Gelly [43] is a Graph API for Flink which contains a 

set of methods and utilities to simplify the 

development of graph analysis applications in Flink. 

Flink-ML [44], a machine learning library is in 

development, it needs more research into its viability.   

Flink and Spark are both general-purpose data 

processing platforms and top-level projects of the 

Apache Software Foundation (ASF). They have a wide 

range of applications when dealing with Big-data 

scenarios. However, the way they are particularly 
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specialized may differ. However, Flink is also a strong 

tool for batch processing. Spark, on the other hand, is 

based on resilient distributed datasets (RDDs). This in-

memory data structure gives the power to Spark’s 

functional programming paradigm. It is capable of big 

batch calculations by pinning memory. In fact, the use-

cases of Spark and Flink overlap a bit. However, the 

technology used is quite different. Flink shares a lot of 

similarities with relational Database Management 

Systems. Data is serialized in byte buffers and 

processed a lot in binary representation. This also 

allows for fine-grained memory control. Flink uses a 

pipelined processing model and it has a query 

optimizer that selects execution strategies and avoids 

expensive partitioning and sorting steps. 

Flink is a true streaming engine instead of micro-batch 

processing in spark, it processes the data streams as 

true streams, i.e., data elements are immediately 

"pipelined" through a streaming program as soon as 

they arrive there. This allows it to perform more 

flexible window operations on streams. While Spark’s 

strategy of micro batching the streams may have a little 

lag associated with it in capturing results. Flink 

designed to compatible with YARN cluster so that it 

allows already existing jobs to run directly on it and it 

has better integration with other projects. Flink avoids 

memory spikes which were typically seen in a Spark 

by better managing its own memory resources. Flink 

enables iterative processing to occur on the same nodes 

instead of having the cluster to run each iteration 

independently. 

MapReduce is getting outdated in the cluster 

computing environment and it is not suggested for the 

mixed variety of applications due to its high latency 

and lack of support for iterative algorithms. But in the 

case where we may not afford enough RAM for cluster 

then MapReduce supports larger datasets on disk. 

Nonetheless, several improvements are proposed and 

these are in-progress for Hadoop MapReduce 

upcoming releases. Modern MapReduce designed to 

optimize the iterative support of the MapReduce 

framework.  

If real-time solutions are of importance, one may wish 

to consider Flink since they offer genuine stream 

processing. Flink offers the best with a combination of 

batch and true stream processing. On the other hand, 

Most of the real world streaming issues could be 

solved adequately with micro-batch type streaming that 

Spark offers. Spark's maturity, established community 

and support for in-memory fault tolerant data make it a 

better choice for nearly every type of workload. There 

are also new projects are growing up to challenge both 

Spark and Flink in the context of general purpose 

computing. 

6. Batch Processing - MapReduce, Tez, and 

Spark 

Batch processing is a type of processing model where 

it executes processing logic in the form batches and 

each batch contains a collection of jobs. Batch 

processing excels at processing large amounts of 

stored and stable data. Based on the size of the data 

being processed and the computational power of the 

system, execution result may differ. However, it 

generally incurs a relatively high-latency and is 

unsuitable to process real-time incoming data. These 

batch processing models are just the general case, 

rather than a special type of processing. Batch 

processes will run its program only once for the set of 

related jobs. Processing engine expresses a 

computation as a data flow graph and executes them. 

Directed Acyclic Graph (DAG) is the generalization of 

this type model. Most of the models differ the way 

how it expresses these Directed Acyclic Graphs 

(DAG).  

 

6.1 MapReduce 

As discussed earlier MapReduce is the Batch 

Processing System of Hadoop ecosystem. It 

emphasizes on the volume of the data which is 

typically stored on disks. The DAG expressed in 

MapReduce often results in multiple MapReduce jobs 

which can potentially harm latency for short queries. 

For large-scale queries, MapReduce has much 

overhead for materializing intermediate job results.  

 

6.2 Tez 

Apache Tez, an open-source framework designed to 

build data-flow driven processing runtimes [45]. With 

Tez, we introduce a processing engine which can 

express a complex DAG of tasks for building an 

application. It is currently built atop Apache Hadoop 

YARN cluster. Tez intentionally designed as a raw 

and expressive tool which is meant to be controlled by 

compiler developers. The main focus of Tez so far has 

been providing a faster interactive analytics engine for 

Hadoop's traditional data-processing languages such as 

Apache Hive [46] and Apache Pig [47]. Tez allows 

interactive batch execution and its DAGs are highly 

customizable by upper-level querying frameworks.  

 

6.3 Spark 

Spark library is a batch processing system at its core. 

Apache Spark has an advanced DAG execution engine 

that supports acyclic data flow and in-memory 

computing [48]. Spark SQL is Spark's module for 

Batch processing over structured data [49]. Spark has a 
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batch execution engine of clean user API with a rich 

set of operators and support for high-level querying 

language such as Spark SQL.  

6.4 Discussion: 

Spark and Tez are both DAG frameworks are more 

flexible than MapReduce with less overhead. Tez built 

on YARN cluster with the MapReduce experience. Tez 

is best suited as a model to build abstraction 

frameworks over it, instead of building applications 

directly using its API. Spark has these both 

capabilities. One major difference is that Spark can run 

as a standalone or on top of Hadoop YARN or on 

Mesos while Tez can only run on top of YARN. While 

Tez is an assembly language at its very core. Pig and 

Hive already have compilers into the Tez backend. 

Spark also claim to support Pig and Hive.  

In a nutshell, Spark is a general purpose engine with 

APIs for mainstream developers, while Tez is a 

framework for purpose-built tools such as Hive and 

Pig. If Tez comes with matching the version of Hive or 

Pig, we can use it as the backend execution engine 

over MapReduce. If we are planning to directly use the 

APIs, whether to write a data-transformation job, 

implement a distributed machine learning algorithm, or 

write your own higher-level data processing language, 

it is efficient to use General purpose Spark. In terms of 

performance Spark expected to have up to 100× better 

performance than Hadoop MapReduce [48]. While 

Hive which runs over compatible Tez version has 

significant performance improvements than Spark. 

7. Streaming - Strom, Flink, and Spark 

streaming 

Stream processing is a real-time execution engine 

where it processes data as it arrives [50]. Stream 

processing can be described as a continuous collection 

of the data and processing of the data instantly in real 

time.  Processing engine applies the business logic to 

each transaction that is being arrived while program 

execution itself, rather than store all the events and 

process them later. It emphasizes the Velocity of the 

data. Stream processing is the best fit choice when sub-

second latencies matters in real time. Most of 

streaming styles will enable state-full processing, 

which comes in handy in facilitating fault recovery. 

This also allows it to replay any lost data. 

 

In stream processing, “message delivery” defines on 

how messages in a stream are sent and received while. 

Message delivery semantics means that for each 

message handed to the mechanism, whether the 

message is delivered zero or more times. These are 

categorized as At-least-once delivery, At-most-once 

delivery, and Exactly-once delivery semantics. Based 

on the requirements we choose either there is 

importance on processing every single record or is 

some nominal amount of data loss acceptable. 

 

7.1 Storm 

Apache Storm is a special-purpose, distributed, real-

time computation engine [51]. The core Storm engine 

follows stream processing model. Apache Storm is a 

data stream processor without batch capabilities. Strom 

is a task parallel continuous computational engine. The 

way it was modeled differently from conventional 

MapReduce and other course-grained designs. Its fine-

grained transformations are giving flexibility while 

designing processing topologies.  

 

Storm designed based on concepts of tuples, spouts, 

and bolts. A tuple is basically what your data is and it 

is the core data structure in the storm.  Spouts are the 

sources for these tuples to arrive. Spouts communicate 

with incoming data tuples, API calls, and other 

ingestion systems.  

Bolts are used for the execution of the business logic 

over the tuples. Storm defines its workflows in 

Directed Acyclic Graphs (DAG) topologies which are 

directed graphs of spouts and bolts. Storm does not 

natively run on top of typical Hadoop clusters but it 

can still consume files from HDFS and write files to 

HDFS. 

 

7.1.1 Storm Trident [52] is an extension of Storm 

project. Trident additionally provides a high-level 

abstraction for doing real-time state-full stream 

processing on top of Storm. Trident provides high-

level data operators like joins, filters, aggregators, 

grouping, and functions. The core data in Trident is 

referred as "Stream", each stream is processed as a 

series of batches. Since trident processes, messages in 

batches throughput time could be longer. 

 

7.2 Flink: 

Flink executes programs as pipelined fault-tolerant 

dataflow [54]. It is a true streaming engine, which 

process data in exact sense real time instead of near 

real time. The core of Apache Flink is a distributed 

streaming dataflow engine.   

Flink Streaming designed based on concepts of data 

source, transformations, and data sink. The data source 

is the incoming data that Flink processes, 

Transformations are the processing step and Data sink 

is where it sends data after processing.  
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Flink’s DataStream API contains programs that 

implement transformations to parallel data 

streams. Flink is optimized for cyclic or iterative 

processes by using iterative transformations on 

collections. Moreover, Flink features a special kind of 

iterations called delta-iterations that can significantly 

reduce the number of computations as iterations go on.    

7.3 Spark Streaming 

Spark Streaming makes it easy to build scalable fault-

tolerant streaming applications [53]. Spark Streaming 

built on top of Spark core for performing the micro-

batch streaming analysis.   

Spark Streaming designed based on concepts of 

receivers, Dstreams, and transformations.  The receiver 

is the sources for the data to arrive. The received data 

is then placed into a Spark RDD. Discretized Stream 

(DStream) is a stream of these data and they are 

implemented as a sequence of RDDs. The 

transformations are the functional and computational 

abilities of Spark core. Spark Streaming operates by 

scheduling data streams into micro-batches. It collects 

all data that arrives from the receivers within a specific 

time and runs a regular batch program on the gathered 

data. While the batch program is running, the data for 

the following mini-batch is collected. Micro-batching 

is a special case of batch processing where the batch 

sizes are smaller. Micro-batching incurs a cost of 

latency due to windowing time to accumulate the data. 

7.4 Additional Tools  

Apache Kafka [55] is a real-time, fault-tolerant, a 

scalable messaging system for moving data in real 

time. It is a better choice for use cases like capturing 

user activity on websites, logs, stocks, and 

instrumentation data.  

Apache Kafka was originally developed by LinkedIn 

[56] to serve as the foundation for their activity stream 

and the data processing pipeline.  

Apache Samoa is a platform for mining Big data 

streams [57]. SAMOA has a focus on giving users the 

necessary tools to so that users can create his or her 

own implementations of algorithms on several stream 

processing engines.  

7.5 Discussion 

All these frameworks provide real-time processing of 

data. Apache Spark is a matured project whereas 

Apache Storm, Flink is currently evolving. Apache 

Storm is a task parallel continuous computational 

engine. Apache Spark is a data parallel general purpose 

batch processing engine.  Flink's pipelined engine 

internally looks a bit similar to Storm, i.e., the 

interfaces of Flink's parallel tasks are similar to Storm's 

bolts. One kind is a true stream processing engine that 

can also do micro-batching, the other is a batch 

processing engine which micro-batches but cannot 

perform streaming in the strictest sense. One processes 

the data in real time and another in near real time.  

 

If sub-second latency is the focused parameter, micro-

batching will not be sufficient. Then Storm, Flink work 

much more easily and with fewer restrictions than 

Spark Streaming. On the other hand, micro-batching 

guarantees give state-full computation, 

making windowing an easy task. Storm and Flink have 

in common that they aim for low latency stream 

processing by pipelined data transfers. However, Flink 

offers a more high-level API compared to Storm.  

Core Storm offers At-most-once message delivery 

[58]. On the other hand, it will be difficult to achieve 

Exactly-once processing in the case of Storm. Hence 

Trident will be useful for those use-cases where you 

require exactly once processing [59] and it makes 

stateful processing easier. But trident adds complexity 

to a Storm topology, lowers performance.  

Apache Flink has also become a viable option to 

consider, as it is a streaming-first processing engine 

with star performance with exactly-once processing 

models. Spark trivially yields perfect for Exactly-once 

message delivery. In Spark, we can replay RDD data 

while replicating over the persistent file systems. If we 

are in need of strict, stateful processing, we may go for 

Spark Streaming for their exactly-once semantics.  

Storm and Kafka combination is promising for true 

stream processing, and they are already in use at a 

number of high-profile companies. When paired 

together, you get the stream, you get it in real time, and 

you get it at linear scale. 

8. Machine Learning - Mahout, H20, and 

MLlib 

Learning may be described as the process of improving 

one’s knowledge to perform a task efficiently. Machine 

learning is a field of computer science that 

gives computers the ability to learn without being 

explicitly programmed [60]. Machine learning is a 

discipline of artificial intelligence focused on pattern 

recognition and computational learning theory. In 

modern days, machine learning has been deployed in a 

wide range of applications, where designing efficient 
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algorithms and programs becomes rather difficult. 

Machine learning can be done over batch processing or 

stream processing and it is commonly used to make 

high-end predictions on data based on previous 

outcomes. Machine learning is prominently used in 

application fields such as email filtering, search engine 

improvement, digital image processing, data mining 

etc. 

There is a range of open source machine learning 

processing models available which enable engineers to 

build, implement and maintain machine learning 

systems. We can also build new projects to create 

impactful machine learning systems. 

8.1 Apache Mahout 

Apache Mahout [61] is an open source project of the 

Apache Software Foundation to build distributed or 

scalable machine learning algorithms. Apache Mahout 

is deployed on top of Hadoop using the MapReduce 

engine. Mahout provides Java libraries and Java 

collections for most of the complex mathematical 

operations. Once large data is stored on the Hadoop 

Distributed File System (HDFS), Mahout provides the 

data science algorithms to find meaningful patterns, 

hidden useful information form these Big data sets.  

Apache Mahout does not restrict its contributions to 

only Hadoop based implementations. It offers more. It 

is primarily focused on algorithms such as 

collaborative filtering, clustering, and classification 

and has been shown to scale well with the increases in 

the size of the data [62]. 

Collaborative filtering: These Mahout algorithms mine 

the user behavior and build product 

recommendations. Mahout provides tools for building 

a fast and flexible engine recommendation engine. 

Clustering: Inbuilt algorithms organizes items into 

naturally occurring groups such that items belonging to 

the same class are similar to each other. Mahout 

Support prominent clustering algorithms such as k-

Means, Mean-Shift, Dirichlet etc [63]. 

Classification: Mahout Categorises content from 

existing. It learns and then assigns unclassified items to 

the best category, by using the simple Map-Reduce-

enabled naïve Bayes classifier [63]. 

8.2 Spark MLlib 

Apache Spark MLlib [64] is regarded as a distributed 

and scalable machine learning machine learning library 

on top of the Spark Core. Spark Mlib can be invoked 

from both Scala, Java, and Python [65]. Common 

machine learning and statistical algorithms have been 

implemented in MLlib such as summary statistics, 

correlations, hypothesis testing, random data 

generation, etc. which are listed at Spark webpage 

[66]. Remaining models can be learned offline and 

applied online to new streaming data. It comprises 

common learning algorithms and utilities as well as 

lower-level optimisation primitives and higher-level 

pipeline APIs.  

 

Classification and Regression: Supports vector 

machines, logistic regression, linear regression, naïve 

Bayes classification [66]. Collaborative filtering 

techniques including Alternating Least Squares (ALS).  

Cluster analysis methods including k-means and Latent 

Dirichlet Allocation (LDA). Optimisation algorithms 

such as stochastic gradient descent and limited-

memory BGGS. Streaming execution of Logistic 

Regression, Linear Regression, and k-Means 

Clustering are included in spark.  

Recently proposed machine learning algorithms which 

are to be listed in addition to existing with upcoming 

versions of MLlib. 

8.2.1 ML pipelines[67] is an MLlib core package 

designed on top of Data Frames that has tools for 

dataset transformations to handle learning process for 

extracting features. It represents a pipeline as a 

sequence of dataset transformations.   

 

8.2.2 MLbase [68] is a layer which wraps Spark MLlib 

and other projects which makes machine learning on 

data sets of all sizes available to a wide range of users.  

8.3 H20: 

H2O is an open source, in-memory, distributed, fast, 

and scalable machine learning and analytics platform 

on Big data and provides easy customization to an 

enterprise environment [69]. H2O allows users to fit 

thousands of potential models as part of discovering 

patterns in data [70]. It is a Java library API and 

Programming in H2O is possible with R, Python, Scala 

and JSON.  

It supports Multi-node clusters and in-memory 

computation. As we discussed In-memory 

computations facilitates faster speed and accuracy. 

H2O designed on top of the data frames which are a 

collection of vectors. Its columns are distributed across 

nodes. Each node able to see the entire dataset. It is 

implemented with a key-value store which is a classic 

peer to peer distributed hash table [71].   
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H2O is a web-based model and Its Graphical User 

Interface is compatible with all leading browsers. It 

Supports a wide range of algorithms and is extensible 

to add and model new machine learning algorithms. 

Users with minimal programming knowledge can still 

utilize this framework using the web-based UI.  

The most promising features of this are that it provides 

a handset of tools for Deep Neural Networks. Deep 

Learning is a modern research area of machine 

learning, making it a promising feature of H2O [72]. 

There are many offerings for deep learning but it is 

targeted towards business instead of research, whereas 

H2O targets both. While H2O community offers an 

enterprise edition with support, many of their offerings 

are available to open source so that can be used 

without purchasing a license. 

8.4 Flink-ML 

FlinkML [73] is a machine learning library currently in 

development for the Flink platform.  

8.5 Oryx 

Oryx [74] does not offer a broad selection of 

algorithms, but still covers the major areas of 

classification, clustering, and collaborative filtering for 

real-time large-scale ML. Oryx is also stand-alone, 

special-purpose machine learning engines. 

8.5 Additional Tools 

Samsara is a Linear Algebra library for Mahout which 

includes statistical operations, and data structures [75]. 

The objective of the Mahout-Samsara project is to 

enable users to build their own distributed algorithms, 

instead of a library of pre-written implementations.  

8.6 Discussion 

These frameworks enable machine learning analysis in 

a distributed environment. These can be built on top of 

a general-purpose framework, such as Spark MLlib, or 

as a special-purpose framework, such as H2O. Both 

H2O and Spark use distributed data frames. 

MLlib is a Spark subproject that uses Apache Spark as 

the underlying framework. Mahout uses more common 

Hadoop MapReduce as the underlying framework. 

MLlib is implemented using Spark’s iterative batch 

and streaming approaches. MLlib based on in-memory 

computation which enables jobs to run significantly 

faster than those using Mahout [76]. Overall MLlib 

will be faster than Mahout as it is built on Apache 

Spark, but Mahout is more stable for Apache Hadoop 

machine learning environment. Mahout includes the 

most options for the recommendation and has more 

maturity than the others. Mahout knew for having a 

wide selection of robust algorithms whereas it has 

inefficient runtimes due to the slowness of disk-based 

MapReduce engine. Mahout was falling out of favor 

but this may change due to design modifications made 

in the latest versions of MapReduce. MLlib strength 

lies in its commercial backing, programming languages 

and matured community but its algorithm 

implementations are young and recent.  

MLlib and H2O are available options for speed and 

scalability. Both have a reasonable choice of 

algorithms, but H2O has additional solutions for deep 

learning. In terms of ease of use, both have APIs for 

programming in multiple languages, and H2O also 

offers a GUI. They also incorporate APIs for 

development in Scala, Java, and Python. Since H2O 

comes as a bundle with most of the configurations 

already tuned, set up is easy and requiring lesser 

learning curve than other open source alternatives. 

While H2O maintains their own processing engine, 

they additionally offer integrations which allow the use 

of its models on Spark and Storm.  

9. Graph Processing - Pregel, PowerGraph, 

and GraphX 

Graphs become the powerful abstraction mechanism 

for representing many relationships types of complex 

data. Graphs are standard for depicting complex 

relationships, interactions, and interdependencies. 

Internet, Maps, Logistics chains, Social networks, and 

other many entities have been extensively connected 

themselves as large interconnected graphs. 

Graphs are everywhere and continuously growing in 

size but to processing them efficiently remains 

challenging. Analysing this immense useful 

information using classical graph algorithms can be 

difficult due to their huge sizes. Recently, a bunch of 

distributed graph processing frameworks has emerged. 

In general, distributed graph processing algorithms are 

iterative and the way of traversing the graphs may 

differ. 

9.1 Pregel  

Pregel [77] is the first vertex-centric large-scale 

distributed graph processing framework. The vertex-

centric computing engine makes the design and 

execution as scalable. Pregel vertex-centric 

computations adopt Valiant’s Bulk Synchronous 

Parallel Model [78].  Bulk Synchronous Parallel (BSP) 
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is a parallel programming model that uses a message 

passing interface (MPI) for parallelizing jobs across 

multiple machines [79].  

 

Its built-in library divides a graph into partitions, each 

partition consisting of a set of vertices and all of those 

related outgoing edges. In a large cluster, Pregel 

distributes the vertices to different nodes in such a way 

that each vertex in a graph receives messages from its 

incoming neighbors, performs the user specified 

processing and then sends messages to its outgoing 

neighbors.  The partitioning function is just a hash of 

the vertex with a number of partitions however users 

can also customize this function. Persistent information 

is stored as files on a distributed storage system, 

whereas temporary data is placed on the local disk.  

 

9.1.1 Giraph 
 

Giraph is an open source Hadoop implementation of 

Pregel. Giraph library runs on top of Hadoop, is used 

by the Graph Search Service which can process graphs 

ranging trillion edges. Further improved the 

performance of Giraph by recent optimizations in 

Multi-threading, Memory optimization. Giraphx: An 

extension of Giraph that additionally 

brings serializability and direct memory reads to 

Giraph. 

 

9.2 PowerGraph  

PowerGraph: [80] is an Edge-Centric Distributed 

Graph-Parallel Computation model for Natural Graphs 

and its operations design also based on Gather, Apply 

and Scatter (GAS).  PowerGraph Model derived from 

real-world natural graphs in which typically many real-

world graphs have vertices that follow power-law 

degree distributions. Graphs with Power-law degree 

contains a small subset of the vertices connects to a 

large part of the graph. It emphasis to address the 

imbalanced workload due to high degree vertices in 

power-law graphs. 

PowerGraph introduces a vertex-cut graph partitioning 

scheme to handle natural graphs. By partitioning out 

the edges, the total data and network overhead of each 

vertex will spread across but it requires additional 

memory for storing the vertex mirrors, which is large 

especially when the vertex value is of huge size.  This 

partitioning scheme divides the vertex set in a way 

such that the edges of a high-degree vertex are handled 

by multiple workers. PowerGraph eliminated the 

degree dependence of the vertex by GAS 

decomposition of vertex over edges. 

 

9.3 GraphX 

GraphX [81] is a distributed graph engine built on top 

of Spark which aims at processing of graphs and 

graph-parallel computations. At a much higher level, 

GraphX extends Sparks Resilient Distributed Dataset 

(RDD) by introducing a new Graph abstraction the 

Resilient Distributed Graph (RDG) [82]. This new 

Graph abstraction is a directed multigraph with 

properties attached to each vertex and edge. GraphX 

design has a vertex collection containing the vertex 

properties uniquely represented by the vertex 

identifier. It includes an edge collection containing the 

edge properties keyed by the source and destination 

vertex identifiers. GraphX new property graphs can be 

designed by combining different vertex and edge 

properties.  

GraphX provides a collection of powerful 

computational operations. For example, these operators 

can be subgraph, join vertices and aggregate messages, 

additional optimizations. GraphX performs very sparse 

join operations against datasets by keeping them in a 

hash table. This hash table containing multiple graph 

records within each RDD record. This design will 

enable fast lookups of specific vertices or edges when 

joining with new data.  

GraphX implements the Gather Apply Scatter (GAS) 

Model decomposition, this enables vertex-cut 

partitioning, enhanced work balance, and minimal data 

movement.  GraphX includes a growing collection of 

graph algorithms and functions to simplify graph 

analytics tasks and it also exploits the graph structure 

to minimize network and storage overhead. 

9.3.1 Titan 

GraphX has no real persistence layer, it can persist to 

HDFS files, but it cannot persist to a distributed data 

store in a common schema. A graph has an only way to 

exist in GraphX when it is loaded off into memory 

from raw data and interpreted as Graph RDDs, Titan 

provides a way to store the graph permanently. By 

default, GraphX solves queries via distributed 

processing on many nodes in parallel where possible as 

opposed to Titan processing pipelines on a single node. 

Titan can also take advantage of parallel processing via 

Faunus/HDFS if necessary. They are both 

exceptionally powerful in their own right and open up 

graph processing to other data stores such as Cassandra 

stored data.  
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They have two different interpretations of how to 

process graphs at scale and are fantastic query layers 

for NoSQL systems.  

9.4 Flink Gelly 

Gelly is a Graph API for Flink to process large graphs 

by distributed processing [83]. In Gelly, graphs will be 

updated and transformed using high-level functions. 

Gelly provides methods to create, transform and update 

graphs along with the library of graph algorithms. 

Graph Transformations are implemented with the 

methods such as map, filter, reverse, union, and 

difference. In Gelly, each Graph is designed by 

a DataSet of vertices and a DataSet of edges. 

The Graph nodes are represented by type Vertex. 

Each Vertex is given by a unique ID and a 

value. Vertex IDs will implement 

the Comparable interfaces.  

9.5 Discussion 

Initial Graph processing frameworks just enabled 

graph processing capabilities on Hadoop. Later 

they built on top of a general-purpose framework 

or as a stand-alone or a special-purpose 

framework. 

MapReduce is a general purpose engine for handling 

Big data. But it is not reasonable to process large 

graphs because of its high iteration costs, excessive 

disk I/O and complex representation for graph 

algorithms. A framework that specially designed only 

for graph processing will increases performance and 

usability compared to general frameworks since 

general-purpose distributed computing tools are not 

tailored for graph processing. Most of these kind graph 

frameworks adopt Pregel’s vertex-centric computing 

model, while different techniques have been proposed 

to match the limitations in the Pregel framework. For 

example, Pregel’s implements data-pushing model and 

message passing paradigm technique while 

PowerGraph implemented Gather, Apply, Scatter 

(GAS) data-pulling model using shared memory 

abstraction. Giraph generally has the poorer execution 

performance since it does not utilize any particular 

technique for handling the skewed workload. 

PowerGraph provides better performance for natural 

graphs.  Apache Flink Gelly, it allows us to pre-

process graph data, process graphs and transform result 

graphs using one system and one API. In general 

vertex-centric programming interfaces is a better fit for 

graph problems than the general-purpose interfaces. 

A distributed graph computation framework on Spark 

can emulate both Pregel and PowerGraph. Spark is 

significantly different from the other graph processing 

frameworks in which it attempts to bridge the gap 

between distributed data flow frameworks like Hadoop 

and graph only processing abstractions like Pregel. 

Pregel accomplishes fault tolerance by deploying 

checkpointing, PowerGraph also takes snapshots of the 

data graph. As specified before, GraphX is built on 

Spark, which implements lineage-based fault tolerance 

with negligible overhead as well as optional dataset 

replication where Flink’s Gelly is young and evolving 

fast. In comparison with other large-scale graph 

processing systems, data replication and re-

computation in GraphX are relatively faster than 

completely restarting after a failure. This is primarily 

because of the performance overhead in conjunction 

with the little incentive to implement recovery due to 

small mean times to failure of modern hardware. 

10. Framework Abstraction 

This abstraction layer is built on top of all processing 

models to make the data processing easy and more 

interactive. These tools allow the user to process data 

using a higher level abstraction.  These wrappers 

provide a better environment and make the code 

development simpler since the programmers do not 

have to deal with the complexities of underlined 

processing engines while coding. This layer typically 

contains Scripting languages, Query inspired languages 

and custom Domain Specific Languages (DSL).  

Framework abstractions are highly recommended since 

we do not have to code all of our jobs using the low-

level APIs of underlined processing engines. It saves 

considerable efforts by not having to implement 

common processing tasks. Coding directly on the 

engines API leads to re-write our code if we decided to 

change the execution engine. While in framework 

abstractions we can replace processing engine at any 

given time. We can also continue using our existing 

visualization and BI reporting tools to analyze and 

report Big data. These frameworks enable support for 

the REST kind of APIs where web-based applications 

can talk directly to data over these APIs. It enhances 

the range of connectivity options.  

Abstraction frameworks also enable User Defined 

Functions (UDFs) which provides the ability to create 

custom functions for databases. An efficient 

framework should have the ability to allow these 

custom functions and an underlined engine should be 
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able to parallelize the execution of User Defined 

Functions across all the nodes. 

In case of NoSQL is considered, schemas for data 

write are not mandatory whereas in data analysis 

schema on data read is an essential factor. Abstraction 

frameworks can also be implemented as a familiar 

Structured Query Languages (SQL). This allows the 

bigger set of enterprise users to query, analyze and 

relate the data using traditional SQL Queries. 

Currently, almost all the SQL-on-BigData solutions 

around are SQL-Like (Partial SQL capabilities) and are 

NOT True SQL (ANSI SQL standards capabilities). 

Various Framework Abstractions are available in 

cluster computing domain. We can choose suitable 

abstraction based on the processing engine and the 

expertise.  

 

10.1 Hive 
 

Apache Hive [84] is a data warehousing software 

facilitates querying and managing large datasets 

residing in distributed storage. This was one of the first 

engines which designed by Facebook [85] to make 

users familiar with SQL query the data in a Hadoop 

environment. SQL-like query language called HiveQL 

[86] that represents data in the form of tables and Hive 

programming is similar to database programming. 

While Hive QL execution SQL-like queries are 

implicitly compiled into map-reduce jobs that are 

processed as batch jobs. HiveQL additionally enables 

users to access and manipulate Hadoop-based data 

stored in HDFS or HBase. MapReduce manages data 

within HDFS files while in contrast, Hive enables to 

represent data in a structured database that is well-

known for users. Hive lacks full SQL support but it has 

schema-on-read and supports multiple schemas for 

different applications. Hive can run on top of 

MapReduce, Tez, and Spark.  

 

Its Built-in User Defined Functions to manipulate 

dates, strings, and other data types. Hive supports 

extending the UDF set to handle use-cases not 

supported by built-in functions. Hive having built-in 

indexing to provide query acceleration. Hive can read 

the data from different storage types such as plain text, 

RCFile, HBase, and others. It’s Metadata storage in an 

RDBMS which significantly minimizes the time to 

perform semantic checks during query execution. Hive 

low-latency operations are not efficient for real-time 

transactions. Since it built for large-scale processing 

over Hadoop, the benefit here is that it loads faster but 

even small jobs may take time.  

 

10.2 Pig 

Apache Pig is a platform for analyzing large data sets. 

Apache Pig consists of a high-level language for 

expressing data analysis programs, coupled with 

infrastructure for evaluating these programs [47]. It is 

an open source framework that generates a high-level 

scripting textual language called Pig Latin. Apache 

Pig is a SQL-like environment initially developed at 

Yahoo, later being used by many organizations.  Pig's 

infrastructure layer consists of a compiler that 

produces sequences of Map-Reduce programs. Pig 

Latin [87] is a script based language which is designed 

in an interactive environment to enable easy 

development of MapReduce jobs and workflows. It 

reduces the development time by supporting parallel 

execution of MapReduce tasks and workflows on top 

of Hadoop. Pig also permits interaction with external 

programs such as shell scripts.  

Pig Latin is like a programming language with scripts 

similar to a data flow Directed Acyclic Graph (DAG). 

In contrast to SQL-like, Pig does not require a schema 

and it can process semi-structured and unstructured 

data. Its schema can be optionally defined at runtime. 

It supports more data formats than HiveQL. Pig can 

execute on both the local environment in a single JVM 

and the distributed Hadoop cluster environment. 

10.3 Spark SQL 

Spark SQL is primarily designed to enable developers 

to incorporate SQL statements into Spark 

programs[88]. Spark SQL primarily designed on the 

concept of Data Frame [89]. Spark RDD abstraction 

takes files/raw data from the Distributed File System. 

Data Frame consumes those RDD and forms tables, 

implements all table operations. These Data Frames are 

looks like database tables. Spark SQL can also use its 

Data Frame over other available data sources. 

In the Spark SQL, we keep multiple database records 

in one Spark record to apply optimizations. To store 

and process relational data efficiently, Spark 

implemented in-memory columnar storage and 

compression. This reduced both the data size and the 

processing time to optimize SQL queries. Spark SQL 

can re-optimize a running query after running the first 

few stages of its task DAG, choosing better strategies 

or the right degree of parallelism based on observed 

statistics. 

 

10.4 Drill 
 

There are several special-purpose SQL engines aimed 

at faster SQL which also includes Apache Drill [90]. 

Drill is a native massively parallel processing query 

engines on read-only data. Drill make large-scale, ad-

hoc querying of data with lower latencies that are 

especially suitable for data exploration. They make it 

possible to scan over petabytes of data. Drill is the 
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open source version of Google's Dremel system [91]. 

To its advantage Drill uses schema-free document 

model similar to MongoDB so that it can query non-

relational data easily.  The Drill is an independent 

execution engine and is targeted only at business users, 

analysts, data scientists, and developers. Drill supports 

a variety of non-relational data stores in addition to 

Hadoop. Drill can discover metadata dynamically and 

does not have to use Hive’s meta store.  However, Drill 

is comparatively less mature and still lacks some of the 

analytical functions that others offer. 

11. Data Rendering 

This Data display layer renders the processed 

information by using graphs, tables, charts and other 

data relationship rendering techniques. Data collections 

from the various execution results are depicted here 

which primarily provides a single, comprehensive view 

for decision makers. These management dashboards 

are easy, efficient, and user-friendly to make an 

effective decision from the historical data trends. Data 

analysis, visualizations, and data reporting are typically 

focused here. 

12. Additional Tools 

12.1 Data Ingestion  

 

12.1.1 Flume [92] is a distributed software that is 

designed to collect, aggregate and reliable transfer of 

data from external machines to distributed file systems 

such as HDFS. It has an extensible data model, flexible 

architecture to handle massively distributed data flows. 

It provides various use full features including fault-

tolerance. Flume highly supports Hadoop, however, it 

is an independent component that can work on other 

platforms. It is known for dataset sink which uses API 

to stream the data from various volume sources into 

data stores such as HDFS and HBase. In addition, it 

has a query processing mode which can transform data 

before it is pushed to the mentioned sink. 

 

12.2 Coordination and Workflow  

 

12.2.1 ZooKeeper 

 

ZooKeeper [93] is an effort to an open source service 

which designed to coordinate applications and clusters 

in a distributed environment. ZooKeeper focused on 

building fast and reliable distributed systems. It 

simplifies the development process for making it agiler 

and more robust implementations. While deploying the 

distributed applications in a production environment, 

different implementations of the services lead to 

management complexity. In such cases, its centralized 

service gives us the tools for naming, maintaining 

configuration information, providing distributed 

synchronization and providing group services. Several 

Hadoop projects such as HBase, Storm, Kafka are 

already using ZooKeeper to coordinate the cluster and 

provide highly-available distributed services. It has 

several use cases, for example, Mesos uses ZooKeeper 

service to coordinate and elect a new master in case of 

master failure. The ZooKeeper Failover Controller is 

responsible for HighAvailable monitoring of its service 

to avoid a single point of failure. 

 

12.2.2 Apache Ambari  
 

Apache Ambari [94] project is aimed at making 

Hadoop management simpler by developing software 

for provisioning, managing, and monitoring health 

Apache Hadoop clusters. Ambari web user interface 

provides a step-by-step wizard to install and 

manage Hadoop services. Ambari provides an intuitive 

dashboard, easy-to-use Hadoop management backed 

by its RESTful APIs.  

 

12.3 Software Distributions 
 

Distributed computing has a range of offerings which 

includes a mixture of solutions packaged into the form 

of distributions such as Hortonworks [95] Cloudera 

[96] and MapR [97].  These are one stop solutions 

shipped along with the online support for distributed 

computations.  They has both non-commercial and 

commercial offerings. Generally commercial offerings 

built specifically to meet enterprise demands which 

incurs additional licensing costs for end to end support. 

Whereas open source offerings are for community and 

restricted for commercial deployments.  

13. Research Scope and Future Work 

We provided qualitative details based on our exposure 

to each project and related works. In this survey, we 

also provided relative comparisons based on 

comprehensive literature available over online 

documentation. Big data by itself is a complex domain 

and has many constraints which needs further 

attention. This also throws us the opportunity for future 

research. Future work will include quantitative 

comparisons of discussed models based on formally 

defined criteria. Research scope identified on 

centralized cluster resource manager that scales 

geographically across multiple datacenters.  The future 

work also involves contributing stable changes to 

generic processing model such as Spark. We continue 

this work further by designing an interface which can 
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be useful for any generic processing engine to move in 

a direction for efficient distributed computing model.   

14. Conclusion 

In this work, we analyzed the distributed data 

processing complete technology stack along with their 

ecosystem by putting them into a layered architecture. 

We discussed recent projects in each of these layers 

and highlighted some design principles. Major 

approaches to distributed processing such as batch, 

iterative batch, and real-time streams were described 

and related insights were presented and discussed.  In 

this survey, we primarily focused on the 

comprehensive review of data processing engines that 

are currently available.  Besides, we have focused on 

the components of the generic processing engine. The 

intention of this survey is neither to endorse nor to be 

judgmental for one particular project but rather to 

compare and explore them briefly. Choosing the 

models purely based on finding the best balance 

between the computational requirements. Most of these 

projects have found ways to co-exist complimenting 

each other to create a unique open source environment 

for innovative product development in the Big data 

distributed computing domain.  
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