
IJCSN - International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

777

 Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

Detailed Design of Distributed Resource Manager

1 M Sai Pradeep; 2 Harish Mamilla; 3 S C Gupta

 1 Department of Computer Science & Engg, IIT-Delhi,

Delhi, 110016, India

2 Department of Computer Science & Engg, IIT-Delhi,

Delhi, 110016, India

3 Department of Computer Science & Engg, IIT-Delhi,

Delhi, 110016, India

Abstract - Large-scale data processing is growing rapidly as enterprises are moving towards big data projects. Big enterprises are also

maintaining distributed data centers across the globe for disaster recovery and business continuance. After experiencing the success of

big data projects, need of running future big data projects on distributed data centers arises. In that case, existing resource management

solutions such as Apache YARN or Mesos fails as they still have a centralized resource manager. So for extreme scale data centers or

distributed data centers, we need a new generation distributed resource management solution.

Keywords - Resource Manager, Mesos, YARN, Distributed, extreme scale.

1. Introduction

pache YARN and Apache Mesos have gained

popularity as a resource management layer for

distributed and fault-tolerant computing. Apache

YARN overcomes the limitation of first generation

Hadoop. Apache Mesos addresses the issue via Resource

Offer mechanism. But both the frameworks have a

centralized resource manager for allocating resources to

applications. Mesos employs a scheduler or Application

Master for one category of application while YARN uses

Application Master for a particular application. Both of

them have improved the scalability issues in Hadoop

clusters but centralized RM is still a barrier for extreme

scales, the scales that are 2 or 3 orders of magnitude

larger than current distributed systems. If the organization

has multiple co-operating data centers across the

geography, then also the existing model won’t work. In

this paper, we present the next generation resource

manager, which changes the existing centralized resource

management. We will discuss how the distributed

resource manager works and its detail design architecture.

2. History and Rationale

 Commodity server clusters are being used vastly now-a-

days as it is very cost efficient. Hadoop, Spark, Storm

frameworks run in large commodity hardware clusters.

But these frameworks were originally designed to do

cluster management, scheduling and running of the tasks

in a single monolithic architecture. So as per this

architecture, more than one framework can’t be run in a

given cluster at a time. But any organization’s

requirement says that multiple frameworks should run

alongside each other which is beneficial from economical

point of view. To facilitate these requirement a resource

management layer is required. A resource is any shared

system entity needed for execution by a service and

multiplexed by the system between the various services it

hosts. CPU time, memory, disk and network bandwidth

are all examples of resources [1].

Before going into details of distributed architecture, we

will justify the limitations of the existing resource

manager such as YARN and Mesos.

2.1 Apache YARN

 Apache Yarn is a cluster resource management tool for

better resource utilization. Before Yarn, for sharing a

large cluster, there was only one way which says that

cluster need to be partitioned first and after that different

partitions will hold different frameworks. But this doesn’t

guarantee efficient usage of the cluster resource. In

A

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

778

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

Hadoop v2.0, Yarn, a resource management layer, was

introduced to handle this difficulty of running different

computational frameworks in the same cluster. It is a

software rewrite which decouples MapReduce’s resource

management and scheduling techniques from the data

processing component.

In a Yarn cluster, two daemons or hosts are the main

elements. The ResourceManager is known as the master

daemon and NodeManager is known as the worker

daemon. Earlier in MRv1, there was a single master

process, JobTracker and a number of subordinate

processes called TaskTrackers. JobTracker co- ordinates

all the jobs running on cluster and assigns tasks on the

TaskTrackers and TaskTrackers run tasks and send

reports periodically to the JobTracker. In this architecture,

major limitation involves scalability bottleneck which is

caused by a single JobTracker. In Yarn, goal was to

eliminate this limitation by creating a short-lived

JobTracker known as ApplicationMaster.

In Yarn architecture, ResourceManager arbitrates the

available cluster resources. It tracks the number of live

nodes and resources available on the cluster. When a

client submits an application, an instance of

ApplicationMaster is started to coordinate all task’s

execution within that application. Therefore,

ApplicationMaster becomes responsible for monitoring

tasks, restarting failed tasks etc. which was earlier

handled by the single JobTracker. NodeManager has a

number of dynamically created resource containers of

different sizes e.g. RAM, CPU. It also manages processes

running in containers. Containers do run different types

of tasks which includes ApplicationMaster also. The

YARN configuration file is an XML file that contains

properties. This file is placed in a well-known location on

each host in the cluster and is used to configure the

ResourceManager and NodeManager. [2]

It can be easily concluded from the above architectural

discussion that ResourceManager is centralized and can

become bottleneck for the next generation extreme-scale

data centers.

2.2 Apache Mesos

Mesos is built using the same principles as the Linux

kernel, only at a different level of abstraction. The Mesos

kernel runs on every machine and provides applications

(e.g., Hadoop, Spark, Kafka, Elastic Search) with APIs

for resource management and scheduling across entire

datacenter and cloud environments.

Basically, Mesos has a master process and set of slave

processes which runs on the cluster nodes. On slave nodes,

different computational frameworks are being deployed on

top of Mesos and they run individual tasks on them.

Master process has the responsibility of resource sharing

using resource offers to the frameworks. Mesos master

process uses resource allocation policies and available free

resources for allocating resources to computational

framework.

In this architecture, Mesos does not need frameworks

to specify their resource requirements. Frameworks can

reject the given offers. A framework reject resource offers

which do not meet requirements and also can wait for the

satisfied ones. This leads to a limitation that Mesos may

send too many offers before the accepted ones. To

minimize this limitation, Frameworks can set filters using

which certain resources won’t be offered by Mesos master.

Mesos running frameworks have to implement a

resource scheduler and an executor process. Mesos master

offers resources to the resource scheduler so the

framework resource scheduler has to register with master

node. Executor processes runs on cluster nodes and can

run individual tasks on these nodes. [3]

From the above discussion, it can be easily seen that

Mesos has a single point of failure in master node. But

Mesos uses Zookeeper service to elect a new master in

case of master failure. Still only one master be active at

any time which can be a bottleneck.

2.3 Limitations

Now-a-days every corporation is opting for distributed

data centres. There are several reasons for opting this

solution. One of the primary reason is disaster recovery

and business continuance. Data depositary is also getting

distributed across data centres which leads to high

availability of applications and data access. It also helps

in load balancing and performance scalability. Current

resource management layer solution i.e. Apache YARN

and Mesos doesn’t address this kind of data centres as it

has a centralized resource manager. YARN and Mesos

decoupled resource management with the programming

model which leads to unprecedented scalability compared

to Hadoop version 1. But Centralized RM prevent Hadoop

from scaling to extreme scales which are 2 or 3 orders of

IJCSN - International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

779

 Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

magnitude larger than current distributed systems. Our

proposed design will address extreme scale issue as well

as distributed data centre issue.[4]

3. Logical Architecture

Apache YARN and Mesos are known to scale up to about

few thousands of machines. Let’s refer this as a sub-

cluster. Extreme scale can be referred as tens of thousands

of nodes which will become a cluster comprising of all

sub-clusters. A master will be assigned for each sub-

cluster so that multiple masters will take care of the whole

cluster. All the masters will co-operate with each other

using Gossipers. A single policy maker needs to be

introduced for controlling corporate policies.

Fig. 1 Logical Architecture

In this section we will discuss high level

architecture and components of the proposed design.

3.1 Sub-Cluster

A sub-cluster consists of a number of commodity

workstations or PCs connected by high speed network. It

contains up to few thousands nodes. The exact size of the

sub-cluster can be determined by considering best

practices and ease of deployment.Sub-clusters can be

geographically distributed and communicate over internet.

Sub-cluster is the scalability unit i.e. we can scale out the

cluster by adding one or more sub-clusters. By design,

each sub-cluster is a fully functional resource

management unit.

3.2 Gossiper

Each master is accompanied by a gossiper who is

responsible for the whole sub-cluster in the whole cluster.

Gossipers talk to each other using gossip protocol. They

exchange resource information among themselves. They

understand the corporate policy from Policy maker.

Resource allocation to the application can only happen

after gossipers talk to each other and reach a conclusion

and instructs the specific master to do the needful. If some

site or sub-cluster is out of resources, then corresponding

gossiper will send this information to all other gossipers.

3.3 Policy Maker

Policy maker overlooks the entire cluster and ensures

system is configured and tuned. It is a very light module

in which several policies can be set and framework

requests will be redirected according to that. It will

provide a user interface in which user capacity allocation

to sub-cluster mappings and other corporate constraints

can be set. Main design point is that cluster availability

does not depends on always-on Policy Maker. Policy

Maker operates continuously but in out of sync from the

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

780

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

cluster operations and provide us a way to enforce certain

requirements such as load balancing, trigger draining of

sub-clusters that will undergo maintenance etc. If the

policy maker is not available, cluster operations will

continue as per last published policies.

3.4 Gossip Protocol

Failure detection and monitoring is essential in

distributed fault-tolerance computing. Traditionally it was

done via centralised way using a database and all nodes

query for information. But it is not practical when large

number of nodes are involved. Gossip protocol can be

used for solving the problem distributively. Gossip

protocol is simple in design. Each participant node sends

out heartbeat or some data to other participant nodes.

Data propagates thought out the cluster like a virus. After

some time duration, data or heartbeat propagates to all the

participants. Each participant node maintains a list of

known member and an integer, heartbeat counter which

can be used for failure detection. Every Tgossip seconds

each participant increments its own heartbeat counter and

sends to some random known member. Upon receiving

the message, the member merges the list with its own list

and adopts the maximum heartbeat counter for each

participant. If the heartbeat counter has not changes after

Tfail seconds, the member is considered as failed. But

member is not be forgotten. Failure detector removes a

participant member after some Tcleanup seconds which is

in general 2 x Tfail. [5]

4. Design

In this section we will be going through the detailed

design of the proposed next generation distributed

resource manager. Subsection starts with how cluster

initializes, then the role of policy maker host followed by

the master,gossiper and executor daemon details. Then

one subsection details how distributed mutual exclusion is

handled while sending sub-cluster offers. Finally one

subsection shows the job execution flow of a framework in

the cluster.

4.1 Initiation of cluster

All the commodity PCs are connected with a high speed

network connectivity will be referred to as slaves as

individual. Agent daemon runs on all the slave machines

and is managed by the machine which runs master and

gossiper daemon. All the machines will be referred to as a

sub-cluster. A cluster consists of several sub-clusters and a

policy maker host which enforces certain policies to the

whole system. Gossiper daemon can be implemented on

the same machine as well as other machine. Same

machine implementation will result in faster as it involves

inter-process communication compared to network

communication. Gossiper handles remote requests in the

same way as that of master. So Agents should register

themselves with master as well as corresponding

gossiper.When Agent daemon starts on machines, they

share the existing resource information with their

masters. Master aggregates the information and sends the

total available resource which can be offered to any

scheduler to the gossiper. Gossipers share that

information among themselves using gossip protocol. And

this information keeps on updated periodically among all

the gossipers.

Scheduler/Framework can register with any master of the

whole cluster. If the scheduler wants to access the other

sub-cluster’s resources, it has to register with the gossiper

as well. Corresponding gossiper will act as a leader for

offering remote sub-cluster to the scheduler. Scheduler

accepts or rejects the sub-cluster offer. Upon rejection,

new offer will be sent subsequently. For remote sub-

clusters, gossiper will act as a proxy for scheduler.

Fig. 2 Scheduler connectivity with Cluster.

All the communications to remote master will be done via

registered gossiper. Sub-cluster resources will be offered

to the scheduler for executing tasks. Overall

Schedulers/Frameworks are going to receive two kinds of

IJCSN - International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

781

 Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

offers i.e. local sub-cluster resource offer and resource

offer of the accepted remote sub-cluster.

Scheduler replies to registered master/gossiper with the

task information. Master/gossiper sends the tasks to

agents.

4.2 Policy Maker

Policy Maker overlooks the entire cluster and ensures

system is configured and tuned. It is a very light module

in which several organizational policies can be set. When

a sub-cluster starts, gossiper should be able to connect to

Policy Maker. Once gossiper connects to policy maker, it

downloads the required policies to enforce and advertises

as a part of cluster to other gossipers.

When multiple masters constitute a whole cluster, failure

detection and monitoring is essential. And this

requirement should be fulfilled distributively which can

be done by Gossip protocol. When a sub-cluster starts,

corresponding master will start the gossiper daemon and

gossiper registers with policy maker. Policy maker

ensures gossip protocol enforcement among all registered

gossipers. Every gossiper maintains a list of known

gossipers and an heartbeat counter for failure detection.

Policy Maker maintains the membership information of

all the registered sub-clusters. Sub-clusters can join or

leave independently by notifying policy maker.It offers

following APIs.

registerSubCluster() :- Gossiper of sub-cluster uses this

API for registration. This is called when the sub-cluster

master initialises or restarts.

deRegisterSubCluster() :- This API is used for de-

registration of the sub-cluster for maintenance or scaled

down purpose.

getSubClusterDetails() :- This API is exposed for

providing existing sub-cluster information. This is mainly

needed by web UI module.

getAllPolicies() :- This API provides all the existing

policies in policy maker. Sub-cluster gossipers use this

API for downloading policies.

updatePolicies() :- Sub-cluster gossipers update their

policies periodically using this API.

heartbeatDetails() :- This API provides all the heartbeat

information of all the sub-clusters.

4.3 Master and Gossiper

Now-a-days In a distributed data center, each sub-cluster

master has permission rights enabled for security

purposes. Though the higher management allows remote

sharing, individual owners of sub-cluster puts restriction

on permissions. So from corporate point of view,

scheduler may not have permission in accessing all the

sub-cluster master hosts.

Scheduler has the choice of registering with any

of the master in which it has permission.

SubscribeMaster() :- First request scheduler

sends is called SUBSCRIBE-M message which results in

a streaming response 200 OK.

SubscribeGossiper() :- Scheduler subscribes to

corresponding gossiper with SUBSCRIBE-G message for

availing remote sub-cluster offers.

Schedulers need to keep both the connection open as long

as possible. All subsequent non-subscribe requests must

be sent on different connection and 202 accepted codes

will be returned. Subscribe.framework-info.id in the

SUBSCRIBE-M/G message helps master/gossiper in

deciding new or already subscribed scheduler. Master

assigns a new FrameworkID if that field is missing in the

message. Gossiper uses the same ID. SUBSCRIBE-M/G

message response includes Mesos-Stream-Id header

which identifies subscribed scheduler instance.

If the persistent connection opened via SUBSCRIBE-M/G

call breaks, master/gossiper considers scheduler as

disconnected. Master/Gossiper starts a failover timeout

after the disconnection. Scheduler has to re-subscribe

within a failover timeout or else master/gossiper considers

scheduler as dead and shuts down all executors and tasks.

Only one persistent connection will be kept open for a

particular Framework ID using Mesos-Stream-Id.

Gossipers send a SC-OFFERS event periodically

whenever any aggregated resources become free. This

aggregated resource offers of each sub-cluster is shared

among all the gossipers periodically via gossip protocol.

Distributed mutual exclusion comes into play before

sending SC-OFFERS event i.e. only one gossiper can send

sub-cluster offer at a time. Offer considered as accepted

till accept or decline or offer-timeout period. We will

discuss the handling of distributed mutual exclusion in

detail in next subsection.

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

782

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

SC-ACCEPT or SC-DECLINE message will be received

by the gossiper within the â€”sc-offer-timeout period or

else offer stands cancelled. The acceptance offer includes

remote cluster details and gossipers are informed by

ActionOnAccept() call. Gossiper replies the gossipers

with the required API.

ActionOnAccept() :- Gossiper shares the accept offer

details with the gossipers and the required sub-cluster

gossiper takes action.

ActionOnReject() :- Gossiper informs that it has exited

the critical section and sub-cluster offer procedure can be

used by another gossiper.

SC-RESCIND event can be sent by the gossiper when a

given offer to a scheduler is no longer valid. Any further

calls SC-ACCEPT or SC-DECLINE by the scheduler will

be discarded. Selected sub-cluster gossiper will have to

send the resource offer to the required scheduler via

registered gossiper.

ResourceOffer() :- Gossiper sends resource offer after co-

ordinating with master but another gossiper acts as a

proxy in between scheduler and sub-cluster.

When a resource offer gets accepted, scheduler sends

tasks information to the registered gossiper.

LaunchTask() :- Gossiper invokes this API for redirecting

this task info to the required gossiper for action.

RegisterAgent() :- Agents register themselves with

Gossipers as well as master at the initiation of the cluster.

TEARDOWN message is sent by the scheduler to

master/gossiper when it wants to tear itself down. Upon

receiving request, master shuts all the executors as well as

corresponding tasks in its sub-cluster and gossiper

handles the same for remote executors.

Teardown() : - This API is called by gossiper for shutting

all the remote executors and its corresponding tasks.

Scheduler has the ability of setting filters on the SC-

ACCEPT or SC-DECLINE message for avoiding

receiving several unnecessary offers. For removing this

filters, SC-REVIVE message can be used by scheduler.

KILL message is sent by scheduler to kill a specific task.

KILL is forwarded to the required gossiper’s executor and

executor takes appropriate action and sends TASK-

KILLED or TASK-FAILED update. If the task is

unknown to the gossiper, TASK-LOST message is

generated. Gossiper will release task’s resources once it

receives the task status update.

SHUTDOWN is sent by scheduler to terminate any of the

executor. Executor kills all the associated tasks and sends

TASK-KILLED updates. executor-shutdown-grace-period

is the configured time period in which executor should do

the necessary job or else agent will forcefully destroy the

container. RECONCILE is sent by scheduler for

enquiring of the tasks. Gossiper sends back UPDATE

events for each task in the list. HEARTBEAT event is

periodically sent by gossiper for ensuring connection is

alive.

4.4 Executor

Executor daemons are launched by the agents to run the

framework’s tasks. The executor daemon interacts with

master and gossiper via Agent by subscribing to agent.

Following diagram shows the hierarchy.

Fig. 3 Hierarchical diagram of major daemons.

SubscribeAgent() :- First request executor sends is called

SUBSCRIBE-A message which results in a streaming

response of 200 OK. Executors need to keep the

subscription request open as long as possible.

All subsequent non-SUBSCRIBE requests must be sent on

different connection and 202 Accepted codes will be

returned. 202 Accepted response means request is

accepted for further processing. If agent reconnects after a

disconnection, it sends a list of Unacknowledged status

updates using ACKNOWLEDGE events. The executor

maintains a list of tasks which are not acknowledged by

agent. Executor should subscribe to agent within

executor-registration-timeout duration or else agent

forcefully destroys executor container. When a task

terminates, terminal update should be sent by executor to

IJCSN - International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

783

 Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

agent such as TASK-FINISHED, TASK-KILLED or

TASK-FAILED.

Agent sends LAUNCH event to the executor while

assigning a new task. Executor sends an UPDATE

message which indicates success or failure of the task

initialization. If scheduler needs to stop a task, it sends a

KILL event. Executor sends an update back to the agent

for freeing the allocated resources. Agent can send

message to executor upon which executor kills all tasks

and sends updates before graceful exit. –executor-

shutdown-grace-period is the duration agent waits before

forceful termination.

4.5 Handling of DME

Sending sub-cluster offers periodically to the registered

frameworks is the responsibility of gossipers. This event is

known as SC-OFFERS. The aggregated available resource

offers of each sub-cluster is shared among all the

gossipers periodically via gossip protocol. The offered

resource implies that framework may get maximum of the

offered resources which will be further drilled down while

offering actual resources.

Distributed mutual exclusion comes into play before

sending SC-OFFERS event i.e. only one gossiper can send

sub-cluster offer at a time. But this is not the case for

master as it manages its own sub-cluster. Offer considered

as accepted till accept or decline or offer-timeout period.

We will go through in a step-by-step manner to

understand how distributed mutual exclusion happens

among gossipers before sending any offer.

Cluster consists of n gossipers and each gossiper requires

mutual exclusion while giving offer. (n is known via

gossip protocol)

When gossiper Gi want to offer, it generates a new

timestamp , TS, and sends a message request (Gi, TS) to

all gossipers. When a gossiper Gj receives a request

message, it may reply immediately or may defer sending a

reply back.

When Gi receives a reply message from all gossipers, it

sends the offer list to all so that it will be considered as

accepted till the end of the offer procedure. After the offer

timeout or acceptance, the gossiper sends reply message to

all its deferred requests.

The decision whether gossiper Gj replies or defers to a

request is based on :

a) If Gj has offered and waiting for response, it

defers its reply.

b) If Gj does not want to offer, it sends a reply

immediately to Gi.

c) If Gj also wants to offer, it will check TS and if

own TS is greater that Gi, then it sends reply or

else defer.

The above mentioned concept can be depicted in the

following diagram.

Fig. 4 DME handling among Gossipers.

4.6 Allocation Module

While slaves continually advertises available resources to

its master, allocation module is responsible for

determining which frameworks should receive a given

offer. Allocation module can be made pluggable so that a

customer can implement its own allocation mechanism

according to business requirement. Default allocation

module can include Dominant Resource Fairness (DRF)

algorithm. DRF algorithm is a generalization of max-min

fairness to multiple resource types. Researchers showed

that DRF is fair for multi-tenant systems, Strategy-proof

i.e. tenant can’t benefit by lying and Envy-free i.e. tenant

can’t envy another tenant’s allocations. Also DRF is

usable in scheduling VMs in a cluster.[6]

Further we can fine-tune resource scheduling without

replacing or re-implementing the default allocation

module. These can be done using roles, weighs and

reservations. By combining roles, weights and

reservations, guarantee can be provided for specific

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

784

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

applications about availing the cluster resources in a

controlled manner.

The concept of roles allows to organize frameworks and

resources into arbitrary groups. To use the concept of

roles in a given cluster, configuration needs to be done

with master and gossiper with a static list of all acceptable

roles that will exist across the cluster. By setting a value

for the –roles configuration option, e.g. roles: prod, test,

remote , frameworks are allowed to register with three

common roles - production, testing, remotely available

resources.

This allows multiple teams to share a large cluster instead

of creating several smaller clusters. Roles can be used for

ensuring a specific type of workload runs on only a subset

of machines.

In addition to roles, cluster can be configured with

weights per role as a means to provide priority to certain

roles over another. Using the above example, master and

gossiper can be configured to prioritize remote role above

that of production and testing.

e.g. weighs : prod=20, test=10, remote = 40

In practice, above rule specifies frameworks in remote

role will be offered two times as many resources in the

production role. When a new resource offer is advertised

to the master, the allocation module checks the roles on

the cluster to determine which one is furthest below its

weighted fair share. Then the allocation module will

check the frameworks within the role and offer resources

to the framework that is furthest below its fair share.

Reservations guarantee that certain roles always receive a

certain amount of slave’s resources. But it may lead to

overall decreased cluster utilization.

Suppose we have a single machine with 32 CPUs, 64

GB RAM and 1 TB disk. And we like to ensure half of the

resources on the machine i.e. 16 CPUs, 32 GB RAM and

512 GB disk are always available to frameworks

registered with the production role. This can be achieved

with following configuration on slave:

–resources="cpus(prod):16; mem(prod):32768;

disk(prod):524288"

–resources="cpus(*):16; mem(*):32768;

disk(*):524288"

The remaining resources are assigned to default role (*)

and offered to frameworks that didn’t specify a specific

role. Following diagram depicts the above concept.

Fig. 5 Allocation module concept

4.7 Job execution flow

The figure below shows an example of how a framework

gets scheduled to run a task.

Fig. 6 Job Execution Flow

IJCSN - International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

785

 Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

Suppose there are two sub-clusters each having two

agents/slaves. Agents report to their registered master and

registered gossiper that each have 4 CPUs and 4GB

memory free. Then sub-cluster-1 and sub-cluster-2 has

total 8 CPUs and 8 GB of memory free. Gossipers share

this information with each other. Let’s walkthrough the

events.

a) Framework-1 registers with master-1 and Framework-2

registers with master-2.

b) Framework-1 wants to access local sub-cluster

resources as well as remote sub-cluster resources. So it

registers with gossiper-1. Framework-2 wants to have

only local sub-cluster resources. So it does not register

with gossiper-2.

c) Gossiper’s learn allocation policies from the policy

maker. Let’s assume gossiper-2 has learned that only 75%

of its available resources can be shared remotely. Via

gossip protocol, gossiper-1 learns that sub-cluster-2 can

offer maximum of 6 GB memory and 6 CPUs. Gossiper-1

acts as a leader and sends offer to framework-1.

d) Framework-1 accepts the remote sub-cluster-2 offer. It

sends SC-ACCEPT message to the registered gossiper-1.

e) Gossiper-1 requests gossiper-2 for providing resource

offer to framework-1 as it will act as a proxy for all the

communications.

f) Master-2 checks via allocation module and decides

which resources can be offered to remote framework.

Same information is shared to gossiper-1 via gossiper-2.

Let it be 4 GB memory and 4 CPUs.

g) Framework-1 receives the resource offer from sub-

cluster-2 via the registered gossiper-1.

h) Framework-1’s scheduler replies to the gossiper with

information about two tasks to run on remote sub-cluster:

using (1 CPUs, 1 GB RAM) for the first task, and (1

CPUs, 2 GB RAM) for the second task.

i) Gossiper-1 sends the tasks information to the required

gossiper in the sub-cluster i.e. gossiper-2 in this case.

j) Gossiper-2 sends the tasks to the agent, which allocates

appropriate resources to the framework’s executor, which

in turn launches the two tasks. Now, (2 CPUs, 1 GB

RAM) is added to the available resources.

k) Master-1 offers local sub-cluster resources to

Framework-1 using allocation module. Framework-1 has

the choice of accepting or rejecting offer.

l) If it accepts the offer, then it sends tasks info along with

ACCEPT message. And master sends the tasks to agent.

4. Conclusions

We have discussed a distributed resource management

layer solution which allows distributed as well as extreme

scale data centers to share resources in an efficient and

controlled manner. Existing resource manager solutions

such as YARN and Mesos does not address the distributed

and extreme scale data centers issues as they have a

centralized host to manage resources. Our solution

distributes that module so that centralized RM will not be

a bottleneck. It can be easily scalable by adding a new

sub-cluster. Policy maker host manages the whole cluster

but sub-clusters are not dependent on the always-on policy

maker host. Data center requirements such as load

balancing, trigger draining of sub-clusters that will

undergo maintenance etc. can easily be handled by

enforcing policies via policy maker. If the policy maker is

not available, cluster operations will continue as per last

published policies. Together these elements make our

solution feasible to all distributed and extreme scale data

centers.

References

[1] Mohit Aron, Peter Druschel, Willy Zwaenepoel, Cluster

Reserves: A Mechanism for Resource Management in

Cluster based Network Servers, Rice University

[2] Vinod, Arun, Chris, Sharad, Robert, Thomas, Jason,

Carlo , Apache Hadoop YARN : Yet Another Resource

Negotiator, SoCC13, 13 Oct. 2013, Santa Clara,

California, USA. ACM 978-1-4503-2428-1.

[3] Benjamine et al. Hindman, Mesos: A platform for fine

grained resource sharing in the data Centre, in

Proceedings of the 8th USENIX conference on

Networked systems design and implementation,2011

[4] Ke Wang , Ning Liu , Iman Sadooghi , Xi Yang ,

Xiaobing Zhou , Tonglin Li , Michael Lang , Xian-He

Sun , Ioan Raicu, Overcoming Hadoop Scaling

Limitations through Distributed Task Execution, in

2015 IEEE International Conference on Cluster

Computing

[5] Robbert van Renesse, Yaron Minsky, and Mark Hayden,

A Gossip-Style Failure Detection Service , , Dept. of

Computer Science, Cornell University 4118 Upson Hall,

Ithaca, NY 14853

IJCSN International Journal of Computer Science and Network, Volume 6, Issue 6, December 2017
ISSN (Online) : 2277-5420
www.IJCSN.org
Impact Factor: 1.5

786

Copyright (c) 2017 International Journal of Computer Science and Network. All Rights Reserved.

[6] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy

Konwinski, Scott Shenker, Dominant Resource

Fairness: Fair Allocation of Multiple Resource Types ,
Ion Stoica University of California, Berkeley

[7] Arka A. Bhattacharya1 , David Culler1 , Eric

Friedman2 , Ali Ghodsi1 , Scott Shenker1, Hierarchical

Scheduling for Diverse Datacenter Workloads

University of California, Berkeley

[8] Apache Myriad Online

[https://www.youtube.com/watch?v=aXJxyEnkHd4]

[9] http://mesos.apache.org/

[10] https://hadoop.apache.org/docs/r2.7.1/hadoop-

yarn/hadoop-yarnsite/YARN.html

[11] Cloudera Blog for Yarn

[12] http://www.adaptivecomputing.com/products/open-

source/torque/

[13] FENG LI and BENG CHIN OOI, M. TAMER OZSU,

SAI WU. 2014. Distributed Data Management Using

MapReduce, In ACM Computing Surveys, 2013

[14] Apache Software Foundation (2013 Oct) [Online] :

 http://hadoop.apache.org/docs/current/hadoop-

yarn/hadoop- yarnsite/YARN.html

[15] Apache Software Foundation [Online] :

http://www.apache.org/

[16] Jeffrey, and Sanjay Ghemawat Dean, MapReduce:

simplified data processing on large clusters, in

Communications of the ACM 51.1(2008): 107-113

M Sai Pradeep currently pursuing Masters at Indian Institute of
Technology, Delhi. He has completed B.E. from M S Ramaiah
Institute of Technology, Bangalore in Computer Science on 2012. He
has worked in Samsung R&D, Noida for 1 year and currently working
at Indian Oil Corporation Ltd. His research interests includes Big
Data, Cloud computing and Data Analytics.

Harish Mamilla currently pursuing Masters at Indian Institute of
Technology, Delhi. He has worked in Honeywell Pvt Ltd.

