Call For Papers
Contact Us

  Geographically and Temporally Weighted Regression (GTWR) for Modeling Economic Growth using R  
  Authors : Miftahus Sholihin; Agus Mohamad Soleh; Anik Djuraidah
  Cite as:


Economic growth is a main condition for the sustainability of regional economic development. Spatially, the highest economic growth in Indonesia is dominated by provinces in Java. However, the economic growth rate of Central Java Province is the lowest economic growth compared to other provinces. The Geographically and Temporally Weighted Regression (GTWR) method performed to model the economic growth of the Central Java Provincial districts by accommodating the influence of spatial-temporal heterogeneity. This modeling involves four explanatory variables e.g, number of labor force, local revenue, district minimum wage, and human development index with response variable gross regional domestic product. The results of the analysis showed that GTWR method has better coefficient determination (99.8%) with root mean squared error and Akaike's Information Criterion values of 0.84 and 1051.98. In general, HDI gives more influence to economic growth at each regency / city in Central Java during 2011-2015.


Published In : IJCSN Journal Volume 6, Issue 6

Date of Publication : December 2017

Pages : 800-805

Figures :06

Tables : 07


M. Sholihin : master student in Department of Statistics, Bogor Agricultural University. His main interests is on spatial analysis and statistical computation.

Dr. A.M. Soleh : Currently worked as a lecture in Department of Statistics, Bogor Agricultural University. His main interests is on statistical computation and data mining.

Dr. A. Djuraidah : Currently worked as a lecture in Department of Statistics, Bogor Agricultural University. Her main interests is on spatial analysis and statistical probability teory.


Coefficient determination, Economic growth, GTWR, Spatial-temporal heterogeneity

The GTWR method is better than the global regression method on economic growth modeling in Central Java in 2011-2015. GTWR model is able to explain the R2 value of 99.8% with the RMSE and AIC values of 0.8403 and 1051.98. The human development index (X4) variables give greater influence to economic growth at each regency / city in Central Java during the period of 2011-2015. This study is limited to the Gaussian kernel function in constructing a weighted matrix. In the next study can be done with other kernel functions to get better results.


[1] K. Aisyiah, Sutikno, and I.N. Latra, ”Pemodelan Konsentrasi Partikel Debu (PM10) pada Pencemaran Udara di Kota Surabaya dengan Metode GeographicallyTemporally weighted Regression”, Jurnal Sains dan Seni Pomits, Vol. 2, No.1, 2014, pp. 2337-3520. [2] Bank Indonesia, ”Bersinergi Menawal Stabilitas, Mewujudkan Reformasi Struktural”, Laporan Perekonomian Indonesia, 2015. [Online]: Available at http://www.bi.go.id/id/ publikasi/ laporan-tahunan/ perekonomian/ Documents/ LPI_2015_web_final.pdf. [3] Badan Pusat Statistik, ”Berita Resmi Statisik: Pertumbuhan Ekonomi Indonesia Triwulan I-2015”, 2015. [Online]: Available at https://www.bps.go.id/ pressrelease/2015/05/05/1143/ pertumbuhan-ekonomiindonesia- triwulan-i-2015-tumbuh-4-71-persen.html. [4] Badan Pusat Statistik, ”JawaTengah dalam Angka: Jawa Tengah in Figures 2015”, Jawa Tengah (ID): BPS. [5] Boediono, Teori Pertumbuhan Ekonomi, Yogyakarta: BPFE, 1999. [6] N.R. Draper, and H. Smith, Applied Regression Analysis, Second Edition, Canada : John Wiley & Sons, Inc, 1998. [7] A.S. Fotheringham, R. Crespo, and J. Yao, ”Geographically and Temporal Weighted Regression (GTWR)”, Geographical Analysis, The Ohio State University, 2015, pp. 1-22. [8] B. Huang, B. Wu, and M. Barry, “Geographically and Temporally Weighted Regression for Modeling SpatioTemporal Variation in House Prices”, International Journal of Geographical Information Science. Vol. 24, No.3, 2010, pp. 383-401. [9] J. Liu, Y. Yang, S. Xu, Y. Zhao, Y. Wang, and F. Zhang, ”A Geographically Temporal Weighted Regression Approach with Travel Distance for House Price Estimation”, Article Entropy MDPI, Vol. 303, No. 18, 2016, pp. 1-13. [10] C.I. Mei, ”Geographically Weighted Regression Technique for Spatial Data Analysis”, School of Science Xi’an Jiaotong University, 2005. [11] E.W. Pambudi, ”Analisis Pertumbuhan Ekonomi dan Faktor-Faktor yang Mempengaruhi (Kabupaten/Kota di Provinsi Jawa Tengah)”, skripsi, Universitas Diponegoro, Semarang, Indonesia, 2013. [12] Y.A. Rahman and A.L. Chamelia, ”Faktor-faktor yang Mempengaruhi PDRB Kabupaten/Kota Jawa Tengah Tahun 2008-2012”, Journal of Economics and Policy, Vol. 8, No. 1, 2015, pp. 88-99. [13] D. Yu, Y.D Wei, and C. Wu, ”Modeling Spatial Dimensions of Housing Prices in Milwaukee”, Environment and Planning B: Planning and Design, Vol. 34, 2007, pp. 1085-1102.